Potential Hasse principle violations for Châtelet surfaces

Sam Roven

University of Washington

April 16, 2020

Sam Roven (University of Washington) Potential Hasse principle violations for Châtelet surfaces

Let X be a smooth projective geometrically integral variety over \mathbb{Q} .

Question

Is
$$X(\mathbb{Q}) = \emptyset$$
?

Definition (Adélic points)

$$X(\mathbb{A}_{\mathbb{Q}}) := X(\mathbb{R}) imes \prod_{\rho} X(\mathbb{Q}_{\rho})$$

Since $X(\mathbb{Q}) \subset X(\mathbb{A}_{\mathbb{Q}})$, if $X(\mathbb{A}_{\mathbb{Q}}) = \emptyset$ then $X(\mathbb{Q}) = \emptyset$.

Question

Do there exist varieties where $X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset$ but $X(\mathbb{Q}) = \emptyset$?

YES! Such varieties are said to fail the Hasse principle (HP).

Consider the equation $y^2 - az^2 = P(\lambda)$ where $a \notin \mathbb{Q}^{\times 2}$ and $P \in \mathbb{Q}[\lambda]$ is separable of degree 4.

1)
$$y^2 - az^2 = (\lambda - 3)(\lambda^3 + 17\lambda - 3)$$
; $(y, z, \lambda) = (0, 0, 3)$
2) $y^2 - az^2 = (\lambda - 57)(\lambda + 163)(\lambda^2 - 13)$; $(y, z, \lambda) = (0, 0, -163)$
3) $y^2 - az^2 = (3 - \lambda^2)(\lambda^2 - 2)$; $(y, z, \lambda) = ??$
4) $y^2 - az^2 = 5\lambda^4 - 17\lambda^2 + 2\lambda - 15$; $(y, z, \lambda) = ???$

Upshot: The only factorization of P that could produce an equation which may fail HP is 3).

How could one show that X fails the Hasse principle?

 $X(\mathbb{A}_{\mathbb{Q}})$ is computable, $X(\mathbb{Q})$ is not in general.

Idea

Find some computable set T such that

$$X(\mathbb{Q})\subseteq T\subseteq X(\mathbb{A}_{\mathbb{Q}})$$

and show that $T = \emptyset$.

Using the Brauer group of X, Manin (1971) defined the Brauer-Manin set:

$$X(\mathbb{Q}) \subseteq X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}} \subseteq X(\mathbb{A}_{\mathbb{Q}}).$$

Thus, the Brauer-Manin set can obstruct the existence of rational points.

- 1) Brauer groups
- 2) Brauer-Manin set
- 3) A useful isomorphism
- 4) Châtelet Surfaces
- 5) Main theorem
- 6) An example!
- 7) Open questions

Definition

Let k be a field. A central simple k-algebra (CSA/k) A is

- a finite-dimensional k-algebra
- center is k
- has no non-trivial proper two-sided ideals

Brauer equivalence

Let $\mathcal{A}, \mathcal{A}'$ be two central simple *k*-algebras. \mathcal{A} and \mathcal{A}' are **Brauer** equivalent if

$$\mathcal{A} \otimes_k \mathsf{M}_n(k) \cong \mathcal{A}' \otimes_k \mathsf{M}_m(k)$$

for some $n, m \in \mathbb{Z}_{>0}$.

The Brauer group of a field

We then define the Brauer group of k

$$Br k := \frac{\{CSA/k\}}{Brauer equivalence}$$

Examples

1) If k is algebraically closed, then Br k = 0.

2) Let $a, b \in k^{\times}$. A (generalized) quaternion algebra, (a, b), is the *k*-vector space with basis $\{1, i, j, ij\}$ where $i^2 = a, j^2 = b$ and ji = -ij.

3) Br $\mathbb{R} \cong \mathbb{Z}/2\mathbb{Z}$ with unique non-trivial element represented by the Hamiltonian quaternions (-1, -1).

Let X be a *nice* (smooth projective geometrically integral) variety over number field k.

Definition

We define the Brauer group of X to be

 $\operatorname{Br} X := \operatorname{H}^{2}_{\acute{e}t}(X, \mathbb{G}_{m})$

This agrees with the definition of Br k in that Br(Spec k) = Br k.

We define $X(\mathbb{A}_k)^{Br}$ using the Brauer group of X.

Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \operatorname{Br} X$, we obtain a commuting diagram

$$egin{aligned} &\prod_{v\in\Omega_{v}}X(k_{v}):=X(\mathbb{A}_{k})\ &\downarrow^{\operatorname{ev}_{\mathcal{A}}}\ &\prod_{v\in\Omega_{k}}\operatorname{Br}k_{v} \end{aligned}$$

Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \mathsf{Br} X$, we obtain a commuting diagram

$$X(\mathbb{A}_k) \ igcup_{\mathsf{ev}_{\mathcal{A}}} \ \oplus_{\mathsf{v}\in\Omega_k} \operatorname{\mathsf{Br}} k_{\mathsf{v}}$$

Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \mathsf{Br} X$, we obtain a commuting diagram

$$egin{array}{ccc} X(k) & \longrightarrow & X(\mathbb{A}_k) \ & & & \downarrow^{\operatorname{ev}_{\mathcal{A}}} & & \downarrow^{\operatorname{ev}_{\mathcal{A}}} \ & & & & fr k \ & & & & & \bigoplus_{v \in \Omega_k} \operatorname{Br} k_v \end{array}$$

Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \mathsf{Br} X$, we obtain a commuting diagram

$$egin{array}{ccc} X(k) & \longrightarrow & X(\mathbb{A}_k) \ & & & \downarrow^{\operatorname{ev}_{\mathcal{A}}} & & \downarrow^{\operatorname{ev}_{\mathcal{A}}} \ & & & & fr k \ & & & & & \bigoplus_{v \in \Omega_k} \operatorname{Br} k_v \end{array}$$

Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \operatorname{Br} X$, we obtain a commuting diagram



Let k be a number field, Ω_k the set of places of k, and k_v the completion of k at $v \in \Omega_k$.

- Given P ∈ X(k) the map P: Spec k → X induces a map on the Brauer group P*: Br X → Br k.
- Fix A ∈ Br X and define ev_A : X(k) → Br k to be the image of A under P*.

For $\mathcal{A} \in \operatorname{Br} X$, we obtain a commuting diagram



This picture shows that $X(k) \subset X(\mathbb{A}_k)^{\mathcal{A}}$ where

$$X(\mathbb{A}_k)^{\mathcal{A}} = \left\{ (P_v) \in X(\mathbb{A}_k) \colon \sum_{v \in \Omega_k} \mathsf{inv}_v(\mathsf{ev}_{\mathcal{A}}(P_v)) = 0 \right\}$$

We call

$$X(\mathbb{A}_k)^{\mathsf{Br}} = igcap_{\mathcal{A}\in\mathsf{Br}\,X} X(\mathbb{A}_k)^{\mathcal{A}}$$

the Brauer-Manin set.

Proposition (Manin 1971)

$$X(k) \subseteq X(\mathbb{A}_k)^{\mathsf{Br}} \subseteq X(\mathbb{A}_k)$$

If $X(\mathbb{A}_k) \neq \emptyset$ and $X(\mathbb{A}_k)^{Br} = \emptyset$ we say there is a **Brauer-Manin** obstruction to the Hasse principle.

Question

How does one effectively compute $X(\mathbb{A}_k)^{\text{Br}}$? In other words, how do I find the "most relevant" $\mathcal{A} \in \text{Br } X$ to show that $X(\mathbb{A}_k)^{\mathcal{A}} = \emptyset$, if it exists?

Proposition

To compute $X(\mathbb{A}_k)^{Br}$ it is enough to compute the intersection over a set of representatives of $\frac{Br X}{Br k}$.

A useful isomorphism

- X/k a nice geometrically rational variety.
- \overline{k} be a fixed algebraic closure of k.

$$\overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k}$$

•
$$\operatorname{Br}_0 X := \operatorname{im}(\operatorname{Br} k \to \operatorname{Br} X).$$

The Hochschild-Serre spectral sequence in étale cohomology gives the isomorphism

$$\frac{\operatorname{Br} X}{\operatorname{Br}_0 X} \cong \operatorname{H}^1(\operatorname{Gal}(\overline{k}/k),\operatorname{Pic} \overline{X})$$

Lemma

1) If $X(\mathbb{A}_k) \neq \emptyset$ then the map Br $k \to$ Br X is injective, hence Br₀ X = Br k

Sam Roven (University of Washington) Potential Hasse principle violations for Châtelet surfaces

A useful isomorphism

- X/k a nice geometrically rational variety.
- \overline{k} a fixed algebraic closure of k.

$$\overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k}$$

• $\operatorname{Br}_0 X := \operatorname{im}(\operatorname{Br} k \to \operatorname{Br} X).$

The Hochschild-Serre spectral sequence in étale cohomology gives the isomorphism

$$\frac{\operatorname{Br} X}{\operatorname{Br} k} \cong \operatorname{H}^1(\operatorname{Gal}(\overline{k}/k),\operatorname{Pic} \overline{X})$$

Lemma

1) If $X(\mathbb{A}_k) \neq \emptyset$ then the map Br $k \to \operatorname{Br} X$ is injective, hence $\operatorname{Br}_0 X = \operatorname{Br} k$

Let $P(\lambda) \in k[\lambda]$ be a separable polynomial of degree 4 and let $a \in k^{\times}$.

$$X_1 := \operatorname{\mathsf{Proj}}_{\frac{k[\lambda][y,z,t]}{(y^2 - az^2 - P(\lambda)t^2)}} \hookrightarrow \mathbb{P}^2_{\mathbb{A}^1_k} \hookrightarrow X_2 := \operatorname{\mathsf{Proj}}_{\frac{k[\mu][Y,Z,T]}{(Y^2 - aZ^2 - Q(\mu)T^2)}}$$

with coordinates $(y : z : t, \lambda)$ and $(Y : Z : T, \mu)$ respectively and $Q(\mu) = \mu^4 P(\frac{1}{\mu})$.

Let X be the surface obtained by gluing X_1 and X_2 via the isomorphism

$$egin{aligned} X_1 - \{\lambda = 0\} &\xrightarrow{\sim} X_2 - \{\mu = 0\} \ (y: z: t, \lambda) &\mapsto (Y: Z: \mu^2 T, 1/\mu) \end{aligned}$$

Definition

We call X the Châtelet surface given by $y^2 - az^2 = P(\lambda)$.

It is smooth, projective, geometrically integral and...

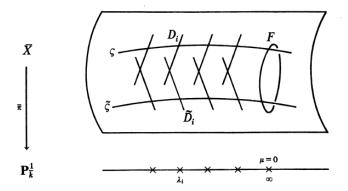
Proposition

X is geometrically rational

Upon base changing to \overline{k} we obtain a very nice picture. Let

$$P(\lambda) = c \prod_{i=1}^{4} (\lambda - \lambda_i)$$

$$y^2 - az^2 = P(\lambda)$$



[Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1987]

Sam Roven (University of Washington) Potential Hasse principle violations for Châtelet surfaces

Goal

Find a Châtelet surface X/\mathbb{Q} that fails the Hasse principle.

•
$$X(\mathbb{A}_{\mathbb{Q}})^{\mathcal{A}} = \Big\{ (P_{\nu}) \in X(\mathbb{A}_{\mathbb{Q}}) \colon \sum_{\nu \in \Omega_{\mathbb{Q}}} \operatorname{inv}_{\nu}(\operatorname{ev}_{\mathcal{A}}(P_{\nu})) = 0 \Big\}.$$

•
$$X(\mathbb{A}_k)^{\mathsf{Br}} = \bigcap_{\mathsf{generators } \mathcal{A} \mathsf{ of } \frac{\mathsf{Br} X}{\mathsf{Br} k}} X(\mathbb{A}_k)^{\mathcal{A}}$$

• $\frac{\operatorname{Br} X}{\operatorname{Br} k} \cong \operatorname{H}^1(\operatorname{Gal}(\overline{k}/k), \operatorname{Pic} \overline{X})$ (and this depends on the factorization of $P(\lambda)$).

Question

If
$$X(\mathbb{A}_k)^{\mathsf{Br}} \neq \emptyset$$
 could X still violate HP?

Theorem (Colliot-Thélène, Sansuc, Swinnerton-Dyer, 1987)

Let k be a number field and X/k a Châtelet surface. X fails the Hasse principle if and only if there is a Brauer-Manin obstruction.

Theorem

Let X be the Châtelet surface given by $y^2 - az^2 = P(\lambda)$. Br X depends on the factorization of P and is given by

$$H^{1}(\operatorname{Gal}(\overline{k}/k), \operatorname{Pic}(\overline{X})) = \begin{cases} \left(\mathbb{Z}/2\mathbb{Z}\right)^{2} & P \text{ has four rational roots} \\ \mathbb{Z}/2\mathbb{Z} & P \text{ has an irred. deg. 2 factor} \\ \{0\} & otherwise \end{cases}$$

An Example

Let X/\mathbb{Q} be the Châtelet surface given by

$$y^2 + z^2 = (\lambda^2 - 2)(3 - \lambda^2)$$

Theorem (Iskovskikh 1971)

X fails the Hasse principle

Sketch

Show: 1) $X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset$

2)
$$\alpha = (-1, 3 - \lambda^2) \in \mathsf{Br}\, \mathbf{k}(X)$$

3) $X(\mathbb{A}_{\mathbb{Q}})^{\alpha} = \emptyset$

How do I compute $X(\mathbb{A}_{\mathbb{Q}})^{\alpha}$?

$$X(\mathbb{A}_{\mathbb{Q}})^{lpha} = \left\{ P \in X(\mathbb{A}_{\mathbb{Q}}) : \sum_{\nu \in \Omega_{\mathbb{Q}}} \mathsf{inv}_{
u}(\mathsf{ev}_{lpha}(P)) = 0
ight\}$$

Compute $inv_{\nu}(ev_{\alpha}(P))$ for each $\nu \in \Omega_{\mathbb{Q}}$.

Lemma

Let k be a local field and X/k a smooth variety. Let $U \subset X$ be a nonempty Zariski open set of X. Then U(k) is analytically dense in X(k).

Lemma

 $\operatorname{inv}_{v} \circ \operatorname{ev}_{\alpha}$ is a continuous function on $X(\mathbb{Q}_{p})$

Corollary

Let X_0 be the affine surface given by $y^2 + z^2 = (\lambda^2 - 2)(3 - \lambda^2)$. To compute $X(\mathbb{A}_{\mathbb{Q}})^{\alpha}$, it is enough to evaluate at points $P \in X_0(\mathbb{Q}_p)$.

Proposition

Fix a place v_p of \mathbb{Q} . Then for any $P \in X_0(\mathbb{Q}_p)$,

$$\operatorname{inv}_{v_p}(\operatorname{ev}_{\alpha}(P)) = \begin{cases} 0 & p \neq 2\\ \frac{1}{2} & p = 2 \end{cases}$$

Corollary

$$X(\mathbb{A}_{\mathbb{Q}})^{lpha} = \emptyset$$

X fails the Hasse principle.

Question

What can one say about nice varieties X/\mathbb{Q} with $X(\mathbb{A}_{\mathbb{Q}}) = \emptyset$? Do they fail HP over some extension of \mathbb{Q} ?

Definition

Given a nice variety X/\mathbb{Q} such that $X(\mathbb{A}_{\mathbb{Q}}) = \emptyset$ we say X is a **potential Hasse principle** (PHP) **violation** if there exists an extension L/\mathbb{Q} such that $X(L) = \emptyset$ and $X(\mathbb{A}_L) \neq \emptyset$

Conjecture (Clark 2011)

Let k be a global field. Every curve C/k of genus ≥ 2 with $X(k) = \emptyset$ is a PHP violation

Question

Is every Châtelet surface X/\mathbb{Q} with $X(\mathbb{A}_{\mathbb{Q}}) = \emptyset$ a PHP violation.

Open questions

Theorem (Creutz-Viray, 2020)

Let X/k be a Châtelet surface.

- \exists finite set of places $S \subseteq \Omega_k$
- A set of local quadratic extensions L_v/k_v for all $v \in S$ such that
- F/k is a quadratic extension with $F_v = L_v$ for all $v \in S$

$$X(\mathbb{A}_F)^{\mathsf{Br}} \neq \emptyset$$

Future Goals

Can one characterize the Châtelet surfaces that are PHP violations?

THANK YOU!