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Abstract. This paper shows how to construct a Châtelet surface which has a Brauer-
Manin obstruction to the Hasse principle. Also, we discuss open questions regarding Châtelet
surfaces that fail the Hasse principle.
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1. Introduction

For A ∈ BrX, we obtain a commuting diagram

X(k) X(Ak)

0 Br k
⊕

v∈Ωk
Br kv Q/Z 0

evA evA

φ
∑

v invv

Let X be a smooth geometrically integral variety over a number field k. We say X satis-
fies the Hasse principle if the set X(k) of k-rational points is non-empty whenever the set
of adélic points X(Ak) is also non-empty. If X fails the Hasse principle, it is natural to
ask about the obstructions that account for this failure. In 1970, Manin used the Brauer
group of X to define the Brauer-Manin set X(Ak)

Br ⊂ X(Ak). It was proven [Man71]
that X(k) ⊂ X(Ak)

Br hence this set can obstruct the existence of k-points on X. This
obstruction is known as the Brauer-Manin obstruction.

A wide area of research investigates the extent with which sets like X(Ak)
Br give ob-

structions to the Hasse principle. In particular one can fix numerical invariants, like the
dimension of X, and attempt to classify when the Brauer-Manin set explains this failure. In
1971, Iskovskikh [Isk71] constructed an example of a smooth projective surface that failed
the Hasse principle. Years later, in the landmark paper [CTSSD87], Colliot-Thélène, Sansuc,
and Swinnerton-Dyer showed that the Brauer-Manin obstruction explains all failures of the
Hasse principle for a class of surfaces known as Châtelet surfaces, which are surfaces that
contain an affine open subscheme cut out by y2 − az2 = P (λ) with P a separable degree 4
polynomial. In this paper, we explain how one can use the Brauer group of a Châtelet surface
(modulo constant algebras) to give a Brauer-Manin obstruction to the Hasse principle. In
particular we prove the following theorem

Theorem 1. Let L denote the splitting field of P so that L(
√
a) is the splitting field of X.

Assume a /∈ L×2. The Brauer group of X depends on the factorization of P (λ) with Brauer
groups given by

H1(Gk, P ic(X)) =


(
Z/2Z

)2

P (λ)has four rational roots

Z/2Z P (λ)has one irredicible quadratic factor

{0} otherwise

Iskovskikh’s original example was indeed a Châtelet surface, but his proof that this
Châtelet surface had no Q-points only used methods based on quadratic reciprocity. Af-
ter proving the above theorem, we give the example of Iskovskikh but use the Brauer-Manin
obstruction to explain the failure of the Hasse principle over Q. We finish the paper by giv-
ing a brief survey of recent results concerning Châtelet surfaces, along with currently open
questions that the author intends to answer.

1.1. Outline. In section 2, we introduce quaternion algebras and give some results that
allow one to determine when they are split. We then generalize to all finite dimensional
central simple k-algebras and define the Brauer group of a field. We finish off section 2
with characterizations of Brauer groups of local and global fields. In section 3 we define
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the Brauer group of a scheme, as well as the Brauer-Manin set, proving several related
and crucial results along the way. We then use the Hochschild-Serre spectral sequence to
give an isomorphism that will enable us to find Brauer classes which give a Brauer-Manin
obstruction to a Châtelet surface X. In section 4 we define Châtelet surfaces and give an
overview of results concerning the classification of ruled surfaces that we then use to prove
that Châtelet surfaces are geometrically rational. We finish off this section by giving explicit
descriptions of the Picard group and intersection theory on a Châtelet surface. We state
and prove the main results of this paper in section 5, proving the theorem stated above,
and as mentioned, we outline open questions regarding Châtelet surfaces that fail the Hasse
principle over extensions of the ground field.

1.2. Notation. Throughout this paper, k will always denote a field of characteristic 0 and
all the k-algebras we consider are finite dimensional. We use k to denote a fixed algebraic
(hence separable) closure of k. If k is a global field, we let Ak denote the adéle ring of k and
Ωk the set of places of k. For a fixed v ∈ Ωk, we let kv denote the completion of k at v, let
Ov denote the valuation ring in kv, and Fv the residue field of Ov.

For a field k let Gk := Gal(k/k) denote the absolute Galois group of k. Given a scheme
X over k, and an extension L/k, we write XL := X ×Spec k Spec L and X := Xk. We also let
X(k) be the k-points of X and X(Ak) the adélic points of X.

By a k-variety we mean a separated scheme of finite type over k and by nice k-variety we
mean a smooth projective geometrically integral k-variety. By surface we mean a smooth
projective variety of dimension 2.

2. Brauer Groups

2.1. Quaternion Algebras.

Definition 1. (Quaternion Algebra) For any two elements a, b ∈ k× the (generalized)
quaternion algebra (a, b) is the 4-dimensional k-algebra with basis 1, i, j, ij, and multiplica-
tion being determined by

i2 = a, j2 = b, ji = −ij

Remark 1. The isomorphism class of the algebra (a, b) depends only on the classes of a and
b in k×/k×2. The substitution i 7→ ui, j 7→ vj induces an isomorphism (a, b) ∼= (u2a, v2b) for
all u, v ∈ k×.

In particular, taking the map i 7→ abj, j 7→ abi we get

(a, b) ∼= (a2b3, a3b2) ∼= (b, a)

Remark 2. The assignment

i 7→ I :=

[
1 0
0 −1

]
, j 7→ J :=

[
0 b
1 0

]
defines an isomorphism (1, b) ∼= M2(k), because the matrices

Id =

[
1 0
0 1

]
, I =

[
1 0
0 −1

]
, J =

[
0 b
1 0

]
, IJ =

[
0 b
−1 0

]
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generate M2(k) as a k-vector space and satisfy the relations

I2 = Id, J2 = b Id, IJ = −JI

Given a quaternion algebra (a, b), we say that (a, b) is split if (a, b) ∼= M2(k). Identfying
when a quaternion algebra is split will be of central importance to us and it can be done in a
a number of ways. Before giving the main result of this section, we give one more definition

Definition 2. (The Associated Conic) Given a quaternion algebra (a, b), we define the
associated conic, C(a, b), to be the projective plane curve defined by the homogeneous equa-
tion

ax2 + by2 = z2

where x, y, z are homogeneous coordinates in P2. In the case of (1, 1) ∼= M2(k) we get the
circle x2 + y2 = z2.

The following result will be our primary tool.

Proposition 1. For a quaternion algebra (a, b), the following are equivalent.
(1) (a, b) is split
(2) (a, b) is not a division algebra
(3) The norm map N : (a, b)→ k defined by N(q) = qq has a nontrivial zero.
(4) The element b is a norm from the field extension k(

√
a)/k.

(5) C(a, b) has a k-rational point

Proof. The implication (1) =⇒ (2) is obvious. To prove (2) =⇒ (3), assume that for all
q 6= 0, N(q) 6= 0. Then q/N(q) is an inverse to q.
Next, assume (3) and that a /∈ k×2 else the result is obvious. If q = x + yi + zj + wij
then N(q) = x2 − ay2 − bz2 + abw2 = 0. This implies that x2 − ay2 = b(z2 − aw2) =
b(z +

√
aw)(z −

√
aw), hence

b =
N(x+

√
ay)

N(z +
√
aw)

and so (4) follows from the fact that the norm is multiplicative.
Next we show (4) =⇒ (1) and then separately, that (4) ⇔ (5). To deduce (1), we show
that (a, b) ∼= (1, 4a2). Assuming again that a is not a square in k, if b is a norm from k(

√
a)

then so is b−1 thus we can find x, y ∈ k such that b−1 = x2 − ay2. Setting u = xj + yij
we have u2 = bx2 − aby2 = bb−1 = 1. Furthermore, one can check that ui = −iu. Setting
v = (1 + a)i + (1 − a)ui we can check that uv = (1 + a)ui + (1 − a)i = −vu and v2 =
(1 + a)2a − (1 − a)2a = 4a2. Note that by considering any non-trivial linear combination
z1 + z2u+ z3v + z4uv = 0, it is easy to show that z1 = z2 = z3 = z4 = 0 using that fact that
{1, i, j, ij} is a basis. This implies that {1, u, v, uv} is a quaternion basis, and by changing
to this basis, we obtain the required isomorphism (a, b) ∼= (1, 4a2) for which (a, b) is split by
remark 2 above.
Finally, assuming (4) again we have x, y ∈ k such that b = x2 − ay2. From here it is
immediate that (y, 1, x) is a k-point on C(a, b). For the converse, if there exist (x0, y0, z0)
satisfying a(x0)2 + b(y0)2 = z2

0 we first observe that we can take y0 6= 0 else we show that a is
a square and are done. This means we can multiply by y−1

0 and find that b = ( z0
y0

)2− a(x0
y0

)2,

and (4) is satisfied. If y0 = 0 then we must have x0 6= 0 otherwise b is a square and we are

done. Multiplying by x−1
0 we find that a is a norm from k(

√
b). �
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Quaternion algebras are a special case of a more general class of algebras known as central
simple algebras. We breifly mention some classical results concerning central simple algebras
below. For further reading see [GS17, Chapters 1 and 2] and [Voi19, Part I]

Definition 3. A k-algebra is called simple if it has no non-trivial (two-sided) ideals. A
k-algebra is central if its center equals k. A central simple algebra is a k-algebra that is both
central and simple.

Theorem 2. (Wedderburn)[GS17, Theorem 2.1.3]
Let A be a finite-dimensional simple algebra over k. Then there exists an integer n ≥ 1

and a division algebra D ⊃ k such that A ∼= Mn(D). Moreover, the division algebra D is
uniquely determined up to isomorphism.

If we take our finite-dimensional simple algebra to also be central, we can say more.

Theorem 3. [GS17, Corollary 2.2.12] A finite-dimensional k-algebra A is a central simple
algebra if and only if there exists an integer n > 0 and a finite Galois extension L/k such
that A⊗k L is isomorphic to the matrix algebra Mn(L).

This theorem implies that for any central simple algebra A/k, dimk(A) is a square.

Definition 4. (Splitting field and degree of a CSA) A field extension L/k for which

A⊗k L ∼= Mn(L) is called a splitting field for A. The integer
√

dimk(A) is called the degree
of A.

Proposition 2. [GS17, Prop 2.2.9)] Let A be a central simple algebra over k. There is a
canonical isomorphism A⊗k Aopp ∼= Endk(A) ∼= Mn(k), where n is the degree of A.

We now have all the tools needed to define the Brauer group of a field.

2.2. The Brauer Group of a Field. Since central simple algebras over a field k can be
characterized by those algebras A for which there exists a finite Galois extension L/k and
an integer n > 1 such that A⊗k L ∼= Mn(L), we can define the following set.

Let CSAL(n) denote the set of k- isomorphism classes of central simple k-algebras of degree
n split by L. We regard it as a pointed set with the base point being the class of Mn(k).

Two central simple k-algebras A and B are Brauer equivalent if A⊗kMm(k) ∼= B⊗kMn(k)
for some m,n > 0.

Definition 5. (The Brauer group of a field) Brauer equivalence defines an equivalence
relation on the union of the sets CSAL(n). We denote the set of equivalence classes by
Br(L/k) and define the Brauer group, denoted Br k, to be

Br k :=
⋃

L/k finite Galois

Br(L/k)

We note here that for any fixed extension L/k, we will refer to Br(L/k) as the relative
Brauer group (of the extension L/k). It can alternatively be defined as the kernel of the
homomorphism

Br(L/k) = ker(Br k → Br L), A 7→ A⊗k L

Proposition 3. The set Br k forms an abelian group under tensor product.
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Proof. Basic properties of tensor product imply that the binary operation is commutative
and associative. Clearly the identity element is the class of Mn(k). Moreover, Proposition
1 implies that given a class in Br(L/k) represented by A, the class of the opposite algebra
Aopp yields an inverse. �

Equivalently, [Ser91, Chapter X, section 5] one can define the Brauer group via Galois
cohomology

Br k := H2(Gk, k
×

)

Remark 3. Generalizing the notion of splitting from Remark 2, a Brauer class A ∈ Br k
is split by L if A is contained in the subgroup Br(L/k). We also note that Br is a covariant
functor from the category of fields to the category of abelian groups.

Remark 4. We can see that each non-trivial Brauer class contains (up to isomorphism) a
unique division algebra and Br (L/k) classifies division algebras split by L. To see why, let
A,A′ be central simple k-algebras, so by Theorem 2

A ∼= Mn(D), A′ ∼= Mn′(D
′)

for some division algebras D and D′. If A and A′ are Brauer equivalent then

A⊗Mm(k) ∼= A′ ⊗Mm′(k) =⇒ Mnm(D) ∼= Mn′m′(D
′)

From here, uniqueness of the division algebra implies that D ∼= D′

Remark 5. It follows from Theorem 2 and the previous remark that if A ∼Br A′ and
dimk(A) = dimk(A′), then A ∼= A′, so each Brauer class contains exactly one central simple
algebra of fixed degree.

In the case where our ground field is algebraically closed, the Brauer group becomes trivial.

Lemma 1. Let k = k. Then every central simple k-algebra is isomorphic to Mn(k) for some
n ≥ 1, hence Br k = 0.

Proof. By the remark, it is enough to show that the only finite-dimensional division algebra
D ⊃ k is k itself. Take any d ∈ D and consider the extension k[d]. Since D is finite
dimensional over k, d is algebraic. Since k = k, k[d] = k. �

Lastly, from the cohomological definition of Br k, we can also obtain a definition of the
relative Brauer group of a Galois extension L/k.

Proposition 4. Br(L/k) ∼= H2(Gal(L/k), L×)

Proof. We apply the inflation restriction exact sequence to the group Gk with normal sub-

group GL, both acting on the Galois-module k
×

. We have that k = L, (k
×

)GL = L
×

,

Gk/GL = Gal(L/k), and Hilbert’s theorem 90 (particularly applied to H1(GL, L
×

)) gives

0→ H2(Gal(L/k), L×)→ H2(Gk, k
×

)→ H2(GL, L
×

)

Using the cohomological definition of the Brauer group of a field, the above sequence becomes

0→ H2(Gal(L/k), L×)→ Br k → Br L

hence ker (Br k → Br L) ∼= Br (L/k) ∼= H2(Gal(L/k), L×). �
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The role that quaternion algebras play in the Brauer group will be our focus from here on
out.

Proposition 5. [GS17, Lemma 1.5.2] Given elements a, b, b′ ∈ k× we have an isomorphism

(a, b)⊗k (a, b′) ∼= (a, bb′)⊗M2(k)

Corollary 1. For the quaternion algebra (a, b) we have the isomorphism (a, b) ⊗k (a, b) ∼=
M4(k).

Proof. Applying the above proposition with b = b′ we have

(a, b)⊗ (a, b) ∼= (a, b2)⊗M2(k) ∼= M2(k)⊗M2(k) ∼= M4(k)

�

The corollary implies that the Brauer class of any quaternion algebra is 2-torsion in the
Brauer group. In fact, it is a theorem of Merkurjev [Voi19, Theorem 8.3.5] that all the
2-torsion in the Brauer group is accounted for by classes of quaternion algebras.

Definition 6. Let L/k be a cyclic extension of degree n with σ a fixed generator of Gal(L/k)
and let b ∈ k×. We define the cyclic algebra (σ, b) to be the L-vector space

L⊕ Ly ⊕ Ly2 ⊕ · · · ⊕ Lyn−1

yn = b, σ(α)y = yα ∀α ∈ L
Remark 6. With a bit of work, one can show that (σ, b) is a central simple algebra defined
over k and split by L [GS17, section 2.5]. Moreover, this generalizes the construction of
quaternion algebras. In general, if k contains the nth roots of unity, then by Kummer theory,
any cyclic extesion L of degree n is of the form L = k( n

√
a) for some a ∈ k×. Letting σ be

a generator of Gal(L/k), we denote the cyclic algebra (σ, b) by (a, b)n. For any quadratic
extension k(

√
a) with σ(

√
a) = −

√
a, we have (σ, b) ∼= (a, b) thus recovering the generalized

the quaternion algebras defined earlier. This shows that quaternion algebras are indeed
central simple algebras.

Given any cyclic extension L/k we also have a nice description of the relative Brauer group

Proposition 6. [Gui18, Cor 7.19] We have an explicit isomorphism

k×

NL/k(L×)

∼−→ Br(L/k), b 7→ (σ, b)

In particular, we can see that (σ, b) is trivial in Br k if and only if b is a norm from L×.

Corollary 2. BrR ∼= Z/2Z
Proof. We can begin by observing that Br R = Br (C/R). Moreover, NC/R(C×) = R>0 so
Proposition 6 implies that

Br R = R/R>0
∼= Z/2Z

To find an explicit representative of the one nontrivial Brauer classe, it suffices to take any
quaternion algebra generated by two elements of R<0 since they are not norms from C×.
Taking the quaternion algebra (−1,−1), otherwise known as Hamilton’s quaternions, will
do. �

The situation over a local field kv paints a much simpler picture. In particular, one can
see that every Brauer class can be represented by a cyclic algebra.
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2.3. The Brauer Group of a Local Field. Let kv denote a non-archimedean local field.
As defined in [Mil13, section 2.2], there is an isomorphism

invv : Br kv → Q/Z

known as the Hasse invariant. The invariant map will be of central importance in computing
the Brauer-Manin set. Here we exhibit some nice properties of this map, when applied to
cyclic algebras.

Let L/kv be an unramified (cyclic) extension and let σ ∈ Gal(L/kv) inducing the Frobenius
map on the residue field, then by [Mil13, Chap IV, Ex. 4.2 and Prop 4.3] we have

invv((σ, b)) =
v(b)

[L : kv]
∈ Q/Z

Remark 7. If we restrict the domain of the invariant map to Br (kv)[2], namely the quater-
nion algebras, then the isomorphism shows that there exists a unique non-trivial 2-torsion
class. In other words, invv|Br(kv)[2] : Br(kv)[2]

∼−→ 1
2
Z/Z.

2.4. The Brauer Group of a Global Field. Let k be a global field and let Ωk denote the
set of places of k. The fundamental exact sequence of global class field theory completely
characterizes the Brauer group of any global field.

0→ Br k →
⊕
v∈Ωk

Br kv

∑
v invv−−−−→ Q/Z→ 0 (2.1)

The Brauer group of k is identified with a subgroup of the direct sum
⊕

v∈Ωk
Br kv and the

inclusion map is given by tensoring any central simple algebra over k with each completion.
The Brauer group of each completion at nonarchimedian places is isomorphic to Q/Z and
1
2
Z/Z at the archimedian place. The Brauer group of k is then the kernel of the sum of local

invariants.

It is worth noting that not only is this group infinite, but even the 2-torsion is infinite. In
fact, even the relative Brauer group Br (Q(

√
2)/Q) is infinite!

3. The Brauer-Manin Obstruction

Throughout this section, let X be a nice variety over a global field k of characteristic zero.

3.1. The Brauer Group of a Scheme. The set X(Ak)
Br is defined via the Brauer group

of X, which is defined as follows.

Definition 7. The Brauer Group of a Scheme Given a scheme X we define

BrX := H2
ét(X,Gm)

By functoriality of cohomology, Br is a functor from the category of schemes to the category
of abelian groups. However, in contrast to fields, Br is contravariant for schemes.

Remark 8. Note that this definition generalizes the notion of the Brauer group of a field,
and given a field k, we have Br k = H2

ét(Spec k,Gm). Furthermore, when X is nice, Br X is
torsion [Mil80, Example III.2.22], as is the case for fields.
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Theorem 4. [Gro68b, Corollarie 7.5] If X is a smooth projective surface, then BrX depends
only on the birational class of X.

Corollary 3. Let X be a nice geometrically rational surface over a field k. Then BrX = 0

Proof. From Theorem 4, we have an isomorphism BrX ∼= BrPn
k
. Moreover, the induced

map Br k → BrPnk coming from the structure morphism Pnk → Spec k is an isomorphism, see
[Poo10, Proposition 6.9.9]. Combining this with Lemma 1, we get the string of isomorphisms
BrX ∼= BrPn

k
∼= Br k = 0. �

Given a morphism X → Spec k we obtain a map on Brauer classes Br k → BrX by pulling
back. Let X be a variety over a field and define

Br0 X := im(Br k → BrX) and Br1 X := ker(BrX → BrX)

One can show the inclusion Br0X ⊂ Br1X ⊂ BrX. Elements of Br0X are called constant
and elements of Br1X are called algebraic.

Proposition 7. If X is geometrically rational then Br1X = BrX. If X is over a global
field k and X(Ak) 6= ∅ then Br k = Br0X.

Proof. If X is rational, then by Corollary 3, Br1X = BrX. To show that the natural map
Br k → BrX is injective, the existence of an adélic point gives a map Pv : Spec kv → Xkv as
in the following diagram

Xkv X

Spec kv Spec k

πvPv

By functoriality of Brauer groups we have

BrX BrXkv

Br k Br kv

P ∗vπ∗v

We can see that Pv splits the base change of the structure morphism of X for every v ∈ Ωk

hence the natural maps π∗v : Br kv → BrXkv split for every v ∈ Ωk. Combining this with
(2.1), it follows that the induced map Br k → BrX coming from the structure map of X is
injective. �

Given a commutative ring R, we set BrR := Br(SpecR).

Lemma 2. [Mil80, III.3.11(a)] Let R be a non-archimedian local ring with residue field F.

The quotient map R→ k induces an isomorphism BrR
∼−→ BrF

Corollary 4. Let k be a complete valued field with valuation denoted by v and valuation ring
Ov. Then BrOv = 0.

Proof. By Lemma 2, Ov → Fv induces the isomorphism BrFv ∼= BrOv. For any non-
archimedian local field, Fv is finite. Since every finite division algebra is a field, the only
central simple algebras over Fv are matrix algebras. Hence BrFv = 0. �
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3.2. The Brauer-Manin Set. Let Ωk denote the set of places of k. If v ∈ Ωk, write kv
for the completion of k at v and Ov for the valuation ring in kv. Let Ak be the adéle ring
of k, that is, Ak is the restricted product Ak =

∏′
v∈Ωk

(kv,Ov). This is a subring of the
product

∏
v∈Ωk

kv containing tuples (Pv) for which there exists a finite set of places S such
that Pv ∈ Ov for all v /∈ S.

Let X(Ak) denote the set of adélic points of X. A priori, X(Ak) is a subset of X(
∏

v∈Ωk
kv)

but one can show ([Poo10], Exercise 3.4) that if X is proper, then X(Ak) =
∏

v∈Ωk
X(kv).

For any Pv ∈ X(kv) and any A ∈ BrX, we can pullback A along Pv : Spec kv → X and
obtain an element of Br kv. We denote this element A(Pv) and regard it as the image of Pv
under the map evA : X(kv) → Br kv, which we call the evaluation map. A priori, this gives
a map evA : X(Ak)→

∏
v∈Ωk

Br kv.
Given a point (Pv) ∈ X(Ak), for some finite set of places S ⊂ Ωk, there exists a finite

type Ok,S scheme X equipped with a map X ↪→ X , such that for fixed A ∈ BrX, one can

find Ã ∈ BrX with Ã pulling back to A under BrX → BrX, [Poo10, Corollary 6.6.11].
In particular, for a kv point Pv, we have Pv(Spec kv) ∈ SpecA ⊂ X and since X is finite
type, A = kv[x1, ..., xn]/(f1, ..., fr). We take S to be the (finite) set of valuations that are
negative when applied to the finitely many coefficients of the fi. For all v 6∈ S, we have
Pv ∈ X(Ov). This implies that for all but finitely many v, evA(Pv) ∈ BrOv. By Corollary 4,
BrOv = 0 so evA(Pv) = 0 for almost all v. Therefore, evA gives a map X(Ak)→ ⊕v∈Ωk

Br kv.

Composing this with the sum of local invariants, invv : Br kv → Q/Z, we obtain a well-
defined map X(Ak)→ Q/Z given by

(Pv) 7→
∑
v∈Ωk

invv(evA(Pv))

Before defining the Brauer-Manin set, we cite one lemma that will be of use in the coming
results.

Lemma 3. [Vir10, Lemma 3.3.2] Let kv be a local field. For any A ∈ BrX

evA : X(kv)→ Q/Z
is continuous for the discrete topology on Q/Z

Definition 8. (The Brauer-Manin Set) Given A ∈ BrX let

X(Ak)
A =

{
(Pv) ∈ X(Ak) :

∑
v∈Ωk

invv(evA(Pv)) = 0

}
We call

X(Ak)
Br =

⋂
A∈BrX

X(Ak)
A

the Brauer Manin set.

Lemma 3 shows that X(Ak)
A is a closed subset of X(Ak).
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Proposition 8. X(k) ⊂ X(Ak)
Br ⊂ X(Ak)

Proof. For A ∈ BrX, we obtain a commuting diagram

X(k) X(Ak)

0 Br k
⊕

v∈Ωk
Br kv Q/Z 0

evA evA

φ
∑

v invv

where the bottom row is the usual exact sequence from global class field theory. It is
immediate from the definition of X(Ak)

Br that X(Ak)
Br ⊂ X(Ak). To see the other in-

clusion, take P ∈ X(k) and its image (Pv) ∈ X(Ak). Commutativity of the diagram
implies that φ(evA(P )) = evA(Pv). Moreover, exactness of the bottom row then gives∑

v invv(φ(evA(P ))) =
∑

v invv(evA(Pv)) = 0 hence P ∈ X(Ak)
A. �

We say there is a Brauer-Manin obstruction to the Hasse principle if X(Ak) 6= ∅
and X(Ak)

Br = ∅

Corollary 5. For any A ∈ Br0X, X(Ak)
A = X(Ak).

Proof. From Proposition 7 and the exactness of the bottom row of the diagram in Proposition
8, we have that for any A ∈ Br k

invv(evA(Pv)) = 0

for every v. �

Corollary 6. To compute X(Ak)
Br, it is enough to compute the intersection over a set of

representatives of BrX/Br0X.

Proof. This is immediate from the above Corollary. �

3.3. The Hochschild-Serre Spectral Sequence in Étale Cohomology. Let X be a
nice variety over a global field k that is everywhere locally solvable. If X is geometrically
rational, then the Hochschild-Serre spectral sequence in étale cohomology gives a tool for
computing the group BrX/Br0X.

Proposition 9. Let k be a global field and X/k a nice geometrically rational variety with
X(Ak) 6= ∅. Then we obtain an exact sequence

0→ PicX → (PicX)Gk → Br k → BrX → H1(Gk,PicX)→ H3(k,Gm)

Since k is a global field, H3(k,Gm) = 0 and we have an isomorphism

BrX

Br0X
∼= H1(Gk,PicX)

Proof. Let L/k be a finite extension with G = Gal(L/k). The Hochschild-Serre sprectral
sequence

Ep,q
2 := Hp(G,Hq

ét(XL,Gm)) =⇒ Lp+q := Hp+q
ét (X,Gm)

gives rise to the usual seven term exact sequence

0→ E1,0
2 → L1 → E0,1

2 → E2,0
2 → ker(L2 → E0,2

2 )→ E1,1
2 → E3,0

2
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In our case, we get

0→ H1(G,H0
ét(XL,Gm))→ H1

ét(X,Gm)→ H0(G,H1
ét(XL,Gm))→ H2(G,H0

ét(XL,Gm))

→ ker(H2
ét(X,Gm)→ H0(G,H2

ét(XL,Gm)))→ H1(G,H1
ét(XL,Gm))→ H3(G,H0

ét(XL,Gm))

One can show (see e.g. [Poo10, Proposition 6.6.1]) that

H0
ét(XL,Gm)) ∼= L×, and H1

ét(XL,Gm)) ∼= PicXL

which gives

0→ PicX → (PicX)G → H2(G,L×)→ ker(BrX → BrXL)→ H1(G,PicXL)→ H3(G,L×)

In particular, for the extension k/k with Galois group Gk we get

0→ PicX → (PicX)Gk → Br k → ker(BrX → BrX)→ H1(Gk,PicX)→ H3(Gk, k
×

)

Furthermore, if k is a global field, then H3(Gk, k
×

) = 0, which is a result due to Tate, see
[NSW08, 8.3.11(iv), 8.3.17]. Proposition 7 then gives rise to the short exact sequence

0→ Br k → BrX → H1(Gk,PicX)→ 0

yeilding the desired isomorphism �

Remark 9. When X(Ak) 6= ∅, if H is a subgroup of Gk, then by looking at the first two terms
of the above sequence, injectivity of the natural map Br k → BrX gives the isomorphism

PicX
k
H
∼= (PicX)H

where k
H

denotes the fixed field of H.

3.4. Galois action on the Picard Group. The Galois group Gal(k/k) acts on PicX
as follows. For σ ∈ Gal(k/k) let σ̃ ∈ Aut(Spec k) be the corresponding morphism. By
considering the base change of X to k, the pullback of the morphism idX ×σ̃ : X → X
induces an automorphism (idX ×σ̃)∗ of PicX. This gives a group homomorphism

Gal(k/k)→ Aut(PicX), σ 7→ (idX ×σ̃)∗

This action preserves the intersection pairing and thus exceptional curves to exceptional
curves [Man74, Theorem 23.8].

If X has torsion free Picard group, we define the splitting field of X to be the smallest
extension L of k in k for which the action of Gal(k/L) on PicX is trivial.

Proposition 10. Let X be a nice surface with torsion free geometric Picard group. Let
L be the splitting field of X and let PicX ∼= Zr for some r > 0. Then the inflation map
inf : H1(Gal(L/k), (PicX)H)→ H1(Gk,PicX) is an isomorphism.

Proof. Applying the inflation restriction exact sequence to the subgroup H = Gal(k/L), we
have Gk/H = Gal(L/k) and the first three terms of inflation restriction are

0→ H1(Gal(L/k), (PicX)H)
inf−→ H1(Gk,PicX)

res−→ H1(Gal(k/L),PicX)Gal(L/k)

12



Since Gal(k/L) is a limit of finite Galois groups, each of which acts trivially on the free
abelian group Zr, it follows that H1(Gal k/L,PicX) = 0 because it is a limit of the groups
Hom(H,Zr) which are all trivial, since H is finite. The result now follows. �

If we further assume that X has adélic points, then Remark 9 gives

H1(Gal(L/k),PicXL) ∼= H1(Gk,PicX)

Moreover, if we have irreducible curves C on X cut out by equations with coefficients in L,
then an element σ ∈ Gal(L/k) acts on C by applying σ to each coefficient.

4. The Geometry of Châtelet Surfaces

The goal of this section is to define Châtelet surfaces and then prove that over k, a Châtelet
surface is the blow-up of a Hirzebruch surface at four points. In other words, that Châtelet
surfaces are geometrically rational. We begin with some background on ruled surfaces.

4.1. Background. Let X be a nice surface, let C,D be divisors on X that intersect properly
and take C.D = #(C ∩ D) = degC(OX(D) ⊗ OC) to be the usual intersection pairing on
Div X × Div X [Har77, V.3]. For a nice variety, the Picard group PicX coincides with the
group of Weil divisors modulo linear equivalence.

Definition 9. (Ruled Surface) A ruled surface is a surface X, together with a surjective
morphism π : X → C to a nonsingular curve C, such that
1) for every point y ∈ C, the fiber Xy is isomorphic to P1

2) π admits a section, σ : C → X.

Proposition 11. [Har77, Proposition V.2.2]
If π : X → C is a ruled surface, then there exists a locally free sheaf E of rank 2 on C such

that X ∼= P(E) over C. Conversely, every such P(E) is a ruled surface over C. Additionally,
P(E) ∼= P(E ′) if and only if there exists a line bundle L on C such that E ∼= E ′ ⊗ L.

Definition 10. (Hirzebruch Surface) A Hirzebruch surface Fn is a ruled surface associ-
ated to the locally free sheaf OP1

k
⊕OP1

k
(−n) for n ≥ 0.

Definition 11. (Blowing up a variety at a point) Let X be a variety and P a closed

point of X. The blow-up of X at P is a variety X̃ equipped with a morphism π : X̃ → X

such that π induces an isomorphism of X̃ − π−1(P ) to X − P . The preimage of P under π
is called the exceptional divisor of the blow-up, and we denote it by E. Moreover, given any

divisor D (containing P ) on X, we define the strict transform of D, denoted D̃, to be the
closure of π−1(D − P ).

Proposition 12. [Har77, Proposition V.3.2] The intersection theory on X̃ is defined by the
following rules:

• If C,D ∈ Pic X, then (π∗C).(π∗D) = C.D
• If C ∈ Pic X, then (π∗C).E = 0
• E2 = −1

We refer to any curve on X of self-intersection −n as a (−n)-curve.
13



Proposition 13. [Har77, Proposition V.3.6] Let C be an effective divisor on X, let P be a

point of multiplicty r on C, and let π : X̃ → X be the blow-up of X at P . Then

π∗C = C̃ + rE

Theorem 5. (Castelnuovo)[Har77, Theorem V.5.7] If Y is a (−1)-curve on a smooth
projective surface X, with Y ∼= P1, then there exists a nonsingular projective surface X0, a
point P ∈ X0, and a commutative diagram

X BlP X0

X0

f

∼

This result allows us to blow-down all (−1)-curves on X and obtain the ”simplest” bira-
tional model of X. As a result of Theorem 3, we will want to know when a given surface is
rational. Due to the work of Castelnuovo, there is an especially nice criterion to determine
this. Define q(S) := h1(S,OS) and for n ≥ 1, Pn(S) := h0(S,K⊗nS ) where KS denotes the
canonical divisor on S. We then have

Theorem 6. (Castelnuovo’s Rationality Criterion)[Bea78, Theorem V.1] Let S be a
surface. If q(S) = P2(S) = 0 then S is rational.

Proposition 14. [Bea78, Proposition III.21] Let S be a ruled surface over C and let g be
the genus of C.Then

q(S) = g and Pn(S) = 0 ∀n ≥ 2

Corollary 7. Fn is rational.

For more on rational surfaces see [Bea78].

We finish out our preliminary results with two important facts concerning Picard groups.

Proposition 15. (Picard Group of a ruled surface)[Har77, Prop V.2.3]
Let π : X → C be a ruled surface, let σ(C) ∼= C0 ⊂ X be a section, and F be a fiber. Then

Pic X ∼= Z⊕ π∗ Pic C

with Z generated by C0. Additionally, C0 and F satisfy C0.F = 1, F 2 = 0.

Proposition 16. (Picard Group of a blow up)[Har77, Prop V.3.2]

Given the natural map π : X̃ → X, we have maps π∗ : Pic X → Pic X̃ and Z → Pic X̃
defined by 1 7→ 1 · E which give rise to the isomorphism

Pic X̃ ∼= Pic X ⊕ Z

4.2. Châtelet Surfaces. Let P (λ) ∈ k[λ] be a separable polynomial of degree 4 and let
a ∈ k×. Take

X1 := Proj
k[λ][y, z, t]

(y2 − az2 − P (λ)t2)
⊂ P2

A1
k

with coordinates (y : z : t, λ) and

X2 := Proj
k[µ][Y, Z, T ]

(Y 2 − aZ2 −Q(µ)T 2)
⊂ P2

A1
k

14



with coordinates (Y : Z : T, µ) and

Q(µ) = µ4P
( 1

µ

)
Let X be the surface obtained by gluing X1 and X2 via the isomorphism

X1 − {λ = 0} ∼−→ X2 − {µ = 0}
(y : z : t, λ) 7→ (Y : Z : µ2T, 1/µ)

which is indeed an isomorphism because

(y2 − az2 − P (λ)t2) 7→ (Y 2 − aZ2 − P (1/µ)µ4T 2) = (Y 2 − aZ2 −Q(µ)T 2)

Definition 12. We call X the Châtelet surface given by y2 − az2 = P (λ).

Observe that X comes with a morphism to π : X → P1
k obtained by gluing the projections

X1 → A1
k and X2 → A1

k given by (y : z : t, λ) 7→ λ and (Y : Z : T, µ) 7→ µ, respectively.
We note here that the original surfaces studied by Châtelet [Châ59] took P (λ) to be degree

3 or 4 but we can obtain the degree 4 case from the degree 3 case by homogenizing, and
if necessary, making a linear change of variables that shifts a root away from the point at
infinity.

Proposition 17. X is smooth, projective, and geometrically integral.

Proof. To show smoothness, we can use the Jacobian criterion on an open cover of X. We
can take as our open cover the 6 open affines given by y 6= 0, z 6= 0, and t 6= 0 on the
Spec k[λ] patch, and Y 6= 0, Z 6= 0, and T 6= 0 on the Spec k[µ] patch. It is easy to see that
the Jacobian has rank 1 on each patch, and the only non-trivial computation happens where
t 6= 0. The Jacobian here is given by [

2y −2az ∂P
∂λ

]
This has rank 1 at all points of X because separability of P implies that ∂P

∂λ
and P are

coprime.
To see that X is projective, we show it is proper. Since properness is local on the base, it is
clear that π is a projective morphism on the standard affine cover of P1

k, hence π is proper.
Since smooth proper surfaces are projective, X is projective. Note, Hironaka’s example
shows that smooth proper schemes are not projective in general, but when we restrict to the
case of surfaces, it is in fact true [Har70, II.4.2].
Finally, to see that it is geometrically integral, note that smoothness implies regularity and
regular local rings are always reduced, so it suffices to check that X is irreducible. It is
enough to check it on an open cover. We first observe that the 6 standard affines intersect

non-trivially, and on the open affine t 6= 0, µ 6= 0, we consider the ring k[λ][y,z,t]
(y2−az2−P (λ))

. Since

a is a square in k, consider the prime ideal p = (y −
√
az). By generalized Eisenstein,

y2 − az2 − P (λ) is irreducible so long as P (λ) is not identically zero. This implies that
k[λ][y,z,t]

(y2−az2−P (λ))
is an integral domain. Verifying irreducibility on the other open affines follows

similarly. �

As the ground field changes so does the Galois action on PicX. Let
√
a denote a fixed

square root of a. When we base change X to k(
√
a) we obtain two sections C0 and C̃0

which extend the sections λ 7→ (
√
a : 1 : 0, λ) and λ 7→ (−

√
a : 1 : 0, λ) respectively of the

15



projection X1k(
√
a)
→ A1

k(
√
a)

Let {λ1, λ2, λ3, λ4} be the roots of P in k so that we have a factorization of P given by

P (λ) = c

4∏
i=1

(λ− λi)

Denote the base change of our structure morphism by π : X → P1
k
. All fibers above points

of P1
k

are smooth conics except for the 4 fibers above the roots λi on the open set X1 , which

degenerate to the union of two intersecting lines. We denote these subschemes of X1 by

Ei = {λ = λi, y −
√
az} and Ẽi = {λ = λi, y +

√
az}

and both Ei and Ẽi are isomorphic to P1
k
. Finally, we let F denote the smooth conic over

∞ (µ = 0).

Proposition 18.

DivX(λ− λi) = Ei + Ẽi − F (4.1)

DivX

(y −√az
t

)
= E1 + E2 + E3 + E4 + C0 − C̃0 − 2F (4.2)

Proof. To compute DivX(λ−λi) we observe that over Spec k[λ] it suffices to compute V (λ−λi)
to find the zeroes, this gives Ei + Ẽi. Over Spec k[µ] we apply the transition function λ 7→ 1

µ

to obtain 1−µλi
µ

. This has a pole at µ = 0 which gives the smooth fiber F hence

DivX(λ− λi) = Ei + Ẽi − F

To carry out the remaining computation, we must compute valuations of the rational

function y−
√
az

t
over each affine patch, of which there are 6 . To do this we must find the

codimension 1 primes containing y −
√
az or t. By localizing the appropriate ring at these

primes, we obtain a DVR that has non-trivial valuation when applied to the functions in
question. When localizing at the codimension 1 primes not containing the above functions,
y −
√
az and t will become units in the localization, hence we safely ignore those.

To find these primes, we first let A = k[λ][y,z,t]
(y2−az2−P (λ)t2)

and then use the fact that codimension

1 primes containing y −
√
az or t, respectively correspond to codimension 0 (minimal) primes

in A/(y −
√
az) and A/t, respectively. After finding these primes p, we find uniformizers in

Ap by using the relation y2 − az2 = P (λ)t2, and then compute valuations. We give divisors
according to the equations that cut them out:

• Ei = {λ = λi, y −
√
az = 0}

• Ẽi = {λ = λi, y +
√
az = 0}

• C0 = {y −
√
az = 0, t = 0}

• C̃0 = {y +
√
az = 0, t = 0}

• F = {µ = 0}
We can now begin the computation:
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• (z 6= 0, µ 6= 0). We first find codimension 1 primes containing (t), hence look for
minimal primes in A/(t).

A/(t) =
k[λ][y]

(y2 − a)
=

k[λ, y]

(y +
√
a)
× k[λ, y]

(y −
√
a)

= k[λ]2

The minimal primes are clearly (y±
√
a) and the corresponding codimension 1 primes

in A are simply obtained by lifting (i.e. adding t as a generator) thus yielding the
primes p1 = (y +

√
a, t) and p2 = (y −

√
a, t)

In the local ring Ap1 , we can write the relation y2 − az2 = P (λ)t2 as

y +
√
a = t2

( P (λ)

y −
√
a

)
Since P (λ)

y−
√
a

is a unit we have y +
√
a ⊂ (t), hence t generates p1 and vp1(t) = 1. An

almost identical calculation shows that t is also a uniformizer in Ap2 . As a result, we
get t vanishing to order 1.

Finding the codimension 1 primes containing y −
√
a on the same patch, we look

at

A/(y −
√
a) =

k[λ][y, t]

(y2 − a− P (λ)t2, y −
√
a)

=
k[λ, t]

(P (λ)t2)
=

4∏
i=1

k[λ, t]

(λ− λi)
× k[λ, t]

(t2)

and after lifting, we get minimal primes qi = (λ− λi, y −
√
a) and p2 = (t, y −

√
a).

In the local ring Aqi , the relation

(y −
√
a)(y +

√
a) =

( 4∏
j=1

(λ− λi)
)
t2

gives us the two expressions

y −
√
a =

(∏4
j=1(λ− λi)

)
t2

(y +
√
a)

and λ− λi = (y −
√
a)
( y +

√
a∏

i 6=j(λ− λi)t2
)

Thus both λ − λi and y −
√
a are uniformizers and at all codimension 1 points pi,

λ − λi and y −
√
a vanish to order 1. Since V (qi) is precisely Ei, we know we will

have
∑
Ei in our computation.

Localizing at q = (y −
√
a, t) we have y −

√
a = (unit)t2 thus t is a uniformizer

and by applying vq to the previous equation we get vq(y −
√
a) = vq(t

2) = 2. We
complete the computation on the z 6= 0 patch by observing that at the prime q,
the divisor corresponding to (y −

√
a, t) vanishes to order 2. This divisor is C0.

Directly computing the valuation of the rational function y−
√
a

t
in these localizations,

we obtain

DivXz 6=0

(y −√a
t

)
= E1 +E2 +E3 +E4 + 2C0 − (C0 + C̃0) = E1 +E2 +E3 +E4 +C0 − C̃0
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• (y 6= 0, µ 6= 0) We make a simplification by noting that the transition function from
the z 6= 0 patch to the y 6= 0 patch is multiplication by z

y
. On the z 6= 0 patch, we

are given the function
y
z
−
√
a

t
and moving to the patch where y 6= 0 we get

z
y
(y
z
−
√
a)

t
=

1− z
√
a

t
By observing how we determined the order of vanishing of t in the local rings Ap1

and Ap2 and the order of vanishing of y −
√
a in Api and Aq, we see that applying

the transition function, while changing the ideals, does not give new divisors in our
computation. As a result, any divisor coming from the computation where y 6= 0 will
be double counted, hence there is nothing more to compute.
• (t 6= 0, µ 6= 0) This patch is defined by Spec(At)0 so t is a unit and there are no

(codimension 1) primes containing t. Moreover, to find primes containing y −
√
az

we look at A/(y −
√
az) which is

k[λ][y, z, t]

(y2 − az2 − P (λ), y −
√
az)

=
k[λ]

P (λ)
=
∏ k[λ]

(λ− λi)
= k

×4

There are 4 minimal primes, namely (λ− λi) but this gives no new information.

• We now move to the other standard open affine of P1
k
. Write Q(µ) =

∑4
i=1 aiµ

i and

observe that under the map (y : z : t, λ) 7→ (Y : Z : µ2T, 1/µ) our rational function
is sent to

y −
√
az

t
7→ Y −

√
aZ

µ2T
When Y, Z 6= 0 the divisor computation is identical to what we did when µ 6= 0.
Moreover, we have looked at all possibilities when µ 6= 0 so it remains to check what
happens when µ = 0 on either of the patches Y 6= 0 or Z 6= 0.

• (Y 6= 0, λ 6= 0) Let B = k[µ][Z,T ]
(1−aZ2−Q(µ)T 2)

and let a0 the constant term of Q(µ). Note

that a0 is the leading term of P (λ) so must be nonzero. On the locus where µ = 0
we get

B/µ =
k[µ][Z, T ]

(1− aZ2 −Q(µ)T 2, µ)
=

k[Z, T ]

(1− aZ2 − a0T 2)

To see that B/µ is an integral domain, it suffices to show that 1−aZ2−a0T
2 is irre-

ducible. By taking p = (z+
√
a) as our prime ideal, its easy to see that p|Z2− a and

p2 6 |Z2− a, hence by generalized Eisenstein, 1− aZ2− a0T
2 is irreducible. This then

implies that the only codimension 1 prime where µ vanishes is q = (1−aZ2−a0T
2, µ).

In the local ring Bq, the relation 1− aZ2 −Q(µ)T 2 can be written as

1− aZ2 − a0T
2 − µ(µ3 + a3µ

2 + a2µ+ a1)T 2

Without loss of generality, we are assuming a1 6= 0. If it were zero, we would take
the first non-zero coefficient and factor out the lowest power of µ attached to it. The
existence of this constant term ensures that right-most term in the above equation
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is µ(unit)T 2. Furthermore, T is a unit as well, hence 1− aZ2 − a0T
2 ∈ (µ) and µ is

a uniformizer. Considering valuations, we can see that 1−
√
az 6∈ (1− aZ2 − a0T

2)
for if it were we would have Z = 1√

a
in B/µ, which in turn would imply that B/µ is

zero dimensional. It now remains to compute vq(µ
2T ).

Using the fact that µ is a uniformizer, we get

vq(µ
2T ) = 2vq(µ) = 2

The vanishing of µ gives the smooth fiber F . We can then say that

DivXy 6=0
(
y −
√
az

µ2T
) = −2F

By the argument we made for µ 6= 0, the patch where T 6= 0 gives no new information,
thus

DivXz 6=0

(y −√a
t

)
= E1 + E2 + E3 + E4 + C0 − C̃0 − 2F

From this we can conclude that 2F = E1 + E2 + E3 + E4 + C0 − C̃0 in PicX.

�

Proposition 19. Let X be a Châtelet surface X defined over k. Then X is a blow-up of a
Hirzebruch surface Fn at 4 points.

Proof. First, observe that all vertical fibers (preimages of π over closed points of P1
k
) are

linearly equivalent. Let F = π−1(P ) and F ′ = π−1(P ′), then F 2 = F.F ′ = 0. From equation

(4.1) we know that Ei + Ẽi − F is a principal divisor, hence in the Picard group, F and

Ei + Ẽi are in the same class. We can now deduce that

0 = F 2 = F.(Ei + Ẽi) = F.Ei + F.Ẽi

Moreover, since the Galois action preserves the intersection pairing, we can conclude that

F.Ei = F.Ẽi = 0. Now, since intersecting with a principal divisor is 0 we have

0 = Ei.(Ei + Ẽi − F ) = Ei.Ei + Ei.Ẽi + Ei.F = E2
i + 1

so E2
i = −1, for i = 1, 2, 3, 4. Intersecting with Ẽi we also see that Ẽ2

i = −1. Take the four

skew lines, Ei, and blow them down. Let Pi ∈ Ei ∩ Ẽi in X and by abuse notation let Pi
denote the image of Pi under f . By Proposition 14, we have that Pi is a smooth (multiplicity

one) point on Ẽi, thus Ẽi ∼= P1
k
. We are left with a P1

k
-bundle over P1

k
which is none other

than Fn for some n. �

Corollary 8. Let X be a Châtelet surface defined over k. Then

Pic X = ZF ⊕ ZC0 ⊕ ZE1 ⊕ ZE2 ⊕ ZE3 ⊕ ZE4

with intersection theory given by

C0.F = C̃0.F = 1 (4.3)

C0.Ei = C̃0.Ẽi = 1 (4.4)

C0.Ẽi = C̃0.Ei = 0 (4.5)

Ei.Ẽi = 1 (4.6)

C0.C̃0 = 0 (4.7)
19



Proof. By realizing X as the blow-up of a Hirzebruch surface, we know that C0.F = 1. Using

equation (4.2) we can conclude that F.C̃0 = 1. Since F ∼ Ei + Ẽi we can see that

1 = C0.F = C0.(Ei + Ẽi) = C0.Ei + C0.Ẽi

Looking at the equations that cut out C0 and Ei we can see that C0.Ei = 1. Equation (4.4)
now follows as does (4.5) by a similar argument. Equation (4.6) is clear, and to deduce (4.7)

observe that {y−
√
az = 0, t = 0} and {y+

√
az = 0, t = 0} cut out C0 and C̃0 respectively.

If the two curves were to intersect, their equations would have a common solution, but this
solution must be y = z = t = 0. Since y, z, t are homogeneous coordinates, at least one of
them must be non-zero. �

5. Main Results: The Brauer Group of a Châtelet Surface

In 1971, Iskovskikh provided an example of a Châtelet Surface that failed the Hasse
principle [Isk71]. In this section, we compute the Brauer group of a Châtelet surface, and in
doing so, will realize that classes of Châtelet surfaces that can fail the Hasse Principle are
those in which the factorization of P (λ) has a certain form [CTSSD87], greatly reducing a
complex problem to a simpler one.

Theorem 7. Let L denote the splitting field of P so that L(
√
a) is the splitting field of X.

Assume a /∈ L×2. The Brauer group of X depends on the factorization of P with Brauer
groups given by

H1(Gk, P ic(X)) =


(
Z/2Z

)2

P (λ)has four rational roots

Z/2Z P (λ)has one irredicible quadratic factor

{0} otherwise

The proof of Theorem 7 is explicit but requires several important reductions.

Lemma 4. The surface Xk(
√
a) is rational. In particular, if a ∈ k×2, then X is rational.

Proof. Let P (λ) =
∏
gj(λ) and let Qgj denote the closed point of degree deg(gj) correspond-

ing to gj. The fiber over Qgj degenerates to the union of two lines over k(
√
a) which we label

Ei and Ẽi. Letting λ = α denote a smooth fiber F we have

DivXk(
√
a)

( gj(λ)

(λ− α)deg(gj)

)
= Ej + Ẽj − (deg(gj)F )

Since Ej.Ẽj = deg(gj) and intersecting with a principal divisor is always zero we have

Ej.(Ej + Ẽj − (deg(gj)F )) = E2
j − Ej.Ẽj − (deg(gj))Ej.F = E2

j + deg(gj) = 0

thus Ej is a (− deg(gj))-curve. Moreover, each component of Ej is a (−1)-curve
For each factor of P (λ) over k(

√
a) we have such a collection of curves. As in the proof of

Proposition 21, by blowing down these skew groups of curves we obtain a Hirzebruch surface,
which is rational by Corollary 7. �

One can see that if a ∈ k×2, then X is rational hence has no Brauer-Manin obstruction.
20



Lemma 5. The Brauer group of X modulo constant algebras is 2-torsion. That is

H1(Gk,PicX)[2] = H1(Gk,PicX)

Proof. First, if a ∈ k×2 then BrX = 0, hence H1(Gk,PicX) = 0. If a is not a square in k
then consider the subgroup H = Gal(k/k(

√
a)) of Gk, with Gk/H ∼= Gal(k(

√
a)/k) ∼= Z/2Z.

By Lemma 4
BrXk(

√
a)

Br k(
√
a)
∼= H1(Gal(k/k(

√
a)),PicX) = 0

Restriction-corestriction implies that Cor ◦Res = [2] and furthermore, this is the zero map
on H1(Gk,PicX).

�

Lemma 6.

H1(Gk,PicX) ∼=
(

PicX
2 PicX

)Gk(
im(PicX)Gk →

(
PicX

2 PicX

)Gk)
)

Proof. Taking Galois cohomology with respect to the exact sequence

0→ PicX
×2−→ PicX → PicX

2 PicX
→ 0

we obtain the long exact sequence

0→ (PicX)Gk
×2−→ (PicX)Gk

ψ−→
( PicX

2 PicX

)Gk δ−→ H1(Gk,PicX)
[2]−→ 0

Lemma 5 implies that H1(Gk,PicX)[2] = H1(Gk,PicX) by exactness so we obtain the
desired isomorphism. �

Lemma 7. A basis for (PicX)Gk is given by {F}

Proof. Let L be the splitting field of P (λ), so then L(
√
a) is the splitting field of X. Let

G = Gal(L
√
a)/k). It is easy to see that

(PicXL(
√
a))

G =
⋂
σ∈G

ker(σ − id)

so in order to find a basis for (PicX)Gk , we intersect bases for all the above eigenspaces.

We can easily see that σ(F ) = F for all σ ∈ G. To find a basis for
⋂
σ∈G ker(σ − id),

will show that ker(σ√a − id) = Span{F}, where σ√a denotes the involution coming from

Gal(k(
√
a)/k) and so then (PicX)Gk = Span{F}. We fix the basis {F,C0, E1, E2, E3, E4}

for PicX and represent the linear map σ√a − id via a matrix in this basis.

σ√a − id =


0 −2 1 1 1 1
0 0 0 0 0 0
0 1 −2 0 0 0
0 1 0 −2 0 0
0 1 0 0 −2 0
0 1 0 0 0 −2
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From here it is immediate that this matrix has rank 5 with kernel spanned by F . This
computation holds independent of the factorization of P (λ) hence (PicX)Gk = Span{F},
and so im

(
(PicX)Gk →

(
PicX

2 PicX

)Gk

)
= Span{F}

�

Proposition 20. A basis for
(

PicX
2 PicX

)Gk depends on the factorization of P (λ).

( PicX

2 PicX

)Gk =


Span{F,E1 + E2, E2 + E3} P (λ)has four rational roots

Span{F,E1 + E2} P (λ)has one irredicible quadratic factor

Span{F} otherwise

Combining this with Lemma 7, we obtain the main result of Theorem 7.

Proof. Since PicX ∼= Z6 we obtain a basis for
(

PicX
2 PicX

)Gk by reducing the entries of the
matrices σ− id modulo 2, finding bases for their respective kernels, and finally, computing a
basis for their intersection. Each of the following cases can be easily computed by associating,

to each σ ∈ G, its corresponding element of S4. We note that σ√a(C0) = C̃0 6= C0 hence
to determine the basis for each eigenspace, we need only look at how the Ei are permuted.
Moreover, the permutations of these roots are given by Gal(L/k), hence it is enough to
compute bases for ker(σ − id) where σ ∈ Gal(L/k). Given an automorphism τ , we denote
its eigenspace of eigenvalue 1 by Sτ . A basis for Sτ is then given by the span of the following
vectors

• F
• Sums of exceptional curves

∑
i∈I Ei where I = {i|τ(i) 6= i}

• Exceptional curves Ej where τ(j) = j.

We note that for any τ ∈ Gal(L/k(
√
a)), τ − id is represented as a matrix, and one can

easily see that this matrix contains no entries divisible by 2, so the above method does in
fact compute bases modulo (2 PicX)Gk .

We begin by noting that since the action of σ√a does not depend in the factorization of P ,

the basis for ker(σ√a − id) modulo (2 PicX)Gk will be the same for each case. Furthermore,
we can observe that σ√a fixes any sum of the form Ei + Ej because from equation (4.1)

σ√a(Ei + Ej) = Ẽi + Ẽj = F − Ei + F − Ej = 2F + Ei + Ej = Ei + Ej ∈
( PicX

2 PicX

)Gk

Reducing the matrix (σ√a−id) modulo 2 we obtain a linear map whose kernel is Span{F,E1+
E2, E2 + E3, E3 + E4}. Furthermore, by equation (4.2) we know that E1 + E2 + E3 + E4 is

linearly equivalent to 2F so E1 + E2 + E3 + E4 = 0 in
(

PicX
2 PicX

)Gk . (C0 is not fixed by any
element of G). We can now conclude that E1 + E2 and E3 + E4 represent the same class in(

PicX
2PicX

)Gk(
im(PicX)Gk→

(
PicX
2PicX

)Gk

)
Case 1: P (λ) = (λ2 − b)(λ2 − c)

In this case, Gal(L/k) ∼= (Z/2Z)2 and up to relabeling, is generated by (12) and (34) thus

S(12) = Span{F,E1 + E2, E3, E4} and S(34) = Span{F,E1, E2, E3 + E4}
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hence ( PicX

2 PicX

)Gk

= Span{F,E1 + E2, E3 + E4}

We conclude that( Pic(X)

2 Pic(X)

)Gk(
im(Pic(X)Gk →

( Pic(X)

2 Pic(X)

)Gk

) =
Span{F,E1 + E2, E3 + E4}

Span{F}
= Span{E1 + E2} ∼= Z/2Z

so

H1(Gk,Pic(X)) ∼= Z/2Z
Case 2: P (λ) = (λ− λ1)(λ− λ2)(λ2 − b)

In this case, Gal(L/k) ∼= Z/2Z and is generated by (34), so S(34) = Span{F,E1, E2, E3 +

E4} and
(

PicX
2 PicX

)Gk

= Span{F,E1 + E2, E3 + E4}. By the same argument as the previous

case, we conclude that

H1(Gk,Pic(X)) ∼= Z/2Z
and is generated by the class of E1 + E2.

Case 3: P (λ) =
∏4

i=1(λ− λi)

In this case, σ√a is the only non-trivial automorphism. This implies that( PicX

2 PicX

)Gk

= ker(σ√a − id) = Span{F,E1 + E2, E2 + E3, E3 + E4}

It now follows that

H1(Gk,Pic(X)) ∼= (Z/2Z)2

and is generated by classes of E1 + E2 and E2 + E3.

Case 4: P (λ) = (λ− λ1)f(λ), with f irreducible

(a) disc(f) ∈ k×2

Let τ = (123) be the generator of Gal(L/k) = A3. This means that ker(τ − id) =
Span{F,E1 +E2 +E3} so intersecting with ker(σ√a − id) we get a subspace of dimension 1,
containing F hence( PicX

2 PicX

)Gk

= Span{F} and H1(Gk,Pic(X)) = {0}

(b) disc(f) 6∈ k×2

Here, Gal(L/k) = 〈ρ = (12), τ = (123)〉. We get

ker(τ − id) = Span{F,E1 + E2 + E3}, ker(ρ− id) = Span{F,E1, E2 + E3}

so intersecting again with ker(σ√a− id) we get a subspace of dimension 1 that must contain
F , giving the same result.
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Case 5: P (λ) irreducible

Recall that the possibilities for Gal(L/k) are the transitive subgroups of S4. These are the

subgroups S4, A4, D4,Z/4Z, and the unique normal subgroup that is isomorphic to
(
Z/2Z

)2

.

Any transitive subgroup containing a 4-cycle will have eigenspace generated by F and E1+
E2 +E3 +E4. No other sum of exceptional divisors (hence no individual exceptional divisor)
is contained in this eigenspace, therefore no exceptional divisor is contained in ∩σker(σ− id).
From this we can conclude that

H1(Gk,Pic(X)) ∼= {0}

whenever Gal(L/k) ∼= S4, D4, or Z/4Z.

If Gal(L/k) ≥
(
Z/2Z

)2

= {(1), (12)(34), (13)(24), (14)(23)}, the non-trivial elements give

eigenspaces Span{F,E1 +E2, E3 +E4}, Span{F,E1 +E3, E2 +E4}, and Span{F,E1 +E4, E2 +
E3} respectively. Intersecting these three with ker(σ√a−id) = span{F,E1+E2, E2+E3, E3+
E4} we see that only multiples of F and the element E1 + E2 + E3 + E4 lie in all 4. This
shows that H1(Gk,Pic(X)) is also trivial in this case.

Lastly, if Gal(L/k) ∼= A4, then the non-trivial automorphisms correspond to 8 cycles
of type (1, 3) and 3 cycles of type (2, 2). These correspond to eigenspaces of the form
Span{F,Ei+Ej +Ek} for i, j, k ∈ {1, 2, 3, 4}. Assume that an element of the form Ei+Ej +
Ek ∈ Span{F,E1 + E2, E2 + E3, E3 + E4} = ker(σ√a − id). Then in particular,

(Ei + Ej + Ek) + (Ei + Ej) = 2Ei + 2Ej + Ek = Ek ∈ ker(σ√a − id)

but σ√a(Ek) = Ẽk 6= Ek, hence
⋂
σ∈G ker(σ − id) = Span{F} and we can conclude that

H1(Gk,Pic(X)) = {0} whenever P is irreducible, completing the proof. �

5.1. An Example. We now review a construction of Iskovskikh of a Châtelet surface that
fails the Hasse priciple, following the exposition made in [Poo10, Section 8.2.5].
Let X be the Châtelet surface given by

y2 + z2 = (3− λ2)(λ2 − 2)

over Q. Given any regular, integral, Noetherian scheme X, we have an injection BrX ↪→
BrK(X) [Gro68a, Corollaire 1.10], where K(X) denotes the function field of X. As ex-
plained in Remark 6 of section 2.2, given any two elements a, b ∈ K(X)×, one can de-
fine a quaternion algebra (a, b) ∈ (BrK(X))[2]. Considering the quaternion algebra A =
(3−λ2,−1) ∈ BrK(X), one can show that A lies in the subgroup BrX using residue homo-
morphisms. In particular, given an open cover {Ui} of X, we have a sequence of injections
BrX ↪→ BrUi ↪→ BrK(X). Furthermore, given Brauer classes Bi ∈ BrUi whose images
agree in BrK(X), one can conclude that they come from BrX. This is a non-trivial fact,
proven in [Poo10, Theorem 6.8.3].
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Given any g ∈ K(X)×, the class of (g,−1) is unaffected by multiplying g by a square or
a norm from k(

√
−1). Let

B = (λ2 − 2,−1) and C = (3/λ2 − 1,−1)

From Proposition 5, we know that

[A] + [B] = [(y2 + z2,−1)] = 0 and [A] + [C] = [((
λ2 − 3

λ2
)2,−1)] = 0

Since 2[A] = 0 we conclude that
[A] = [B] = [C]

One can show [Poo10, Proposition 8.2.14] that there exists an open cover {UA, UB, UB} of X
on which A,B, C represent respective Brauer classes on each open set. It then follows that
[A] ∈ BrX.

Each of these three representatives will be used to compute the set X(AQ)Br. To evaluate
A at a point P ∈ X(k) for any k ⊃ Q, choose any of A,B, or C such that the rational
function of λ is defined and non-zero at P , and replace the rational function by its value at
P . For example, if P is defined and non-zero at 3−λ2 then A(P ) = (3−λ(P )2,−1) ∈ Br k[2].

Since BrX
BrQ
∼= Z/2Z, we need only compute X(AQ)A with A, a generator of BrX

BrQ . We will
show that A gives a Brauer-Manin obstruction to the Hasse principle, that is, we show that
X(AQ)A 6= ∅. We begin by noting that X has a Qp point for every p ≤ ∞, in other words

Proposition 21. X(AQ) 6= ∅
Before we prove the proposition we recall the notion of a Hilbert symbol along with a

basic property. For v ∈ Ωk and t, u ∈ k×v we define the Hilbert symbol (t, u)v ∈ {±1} by
the rule (t, u)v = 1 if and only if x2− ty2 = uz2 has a solution (x, y, z) 6= (0, 0, 0) ∈ k×3

v . The
main property of Hilbert symbols we will use is the following

Lemma 8. [Ser73, Chapter III] Suppose that v is odd and that v(t) = 0. Then (t, u)v = −1
if and only is v(u) is odd and the image of t in Fv is a non-square.

Proof. The fact that X(R) 6= ∅ is obvious so we begin by assuming that v is 2-adic. By
considering the univariate polynomial f(λ) = (λ2− 2)(3−λ2) obtained by setting y = z = 0
we can see that

v(f(0)) > 2v(f ′(0))

Hence the strong version of Hensel’s Lemma [Lan94, Chapter II, Proposition 2.2] implies
that there exists a root in Q2.

If v is odd and v 6= v3, we aim to prove that (−1, (x2 − 2)(3− x2))v = 1 for x ∈ Qp. Note
that this would imply the existence of a p-adic solution to y2 + z2 = (λ2− 2)(3−λ2) for odd
p not equal to 3. By Lemma 8, it is enough to find x ∈ Qp such that vp((x

2 − 2)(3− x2)) is
even. Pick any x ∈ Qp such that v(x) 6= 0, it follows that

vp((x
2 − 2)(3− x2)) = vp(x

2 − 2) + vp(3− x2) = 2vp(x
2) = 4vp(x)

So X has a Qp point for all p 6= 3.
When p = 3, the proof follows similarly. For x ∈ Q3 such that v3(x) < 0 we have

v3((x2 − 2)(3− x2)) = 4v3(x)

Hence X has a Q3 point. �
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It now remains to compute invvp(A(P )) and by implicit function theorem, it is enough to
compute this for P ∈ U(Qp) for any Zariski-dense open set U ⊂ X.

Lemma 9. Let k be a local field and let X be smooth of dimension n over k. Let U ⊂ X be
a nonempty Zariski open set of X. Then U(k) is analytically dense in X(k).

Proof. Take P ∈ X(k). We show that we can find a sequence of points Pi ∈ U(k) that
converge to P . Let π : X → Spec k be the structure morphism of X, by [Poo10, Prop
3.5.48], there exists a Zariski open neighborhood V of P and an étale morphism ϕ : V → An

k

such that

V An
k

Spec k

π

ϕ

The étale map ϕ satisfies the hypothesis of the implicit function theorem, thus there exists
analytically open neighborhoods O1 3 P and O2 of V (k) and kn respectively, such that ϕ
induces a homeomorphism θ : O1 → O2.
Let X \ U denote the Zariski complement of U and consider (X \ U) ∩ V , which contains

both P and O1. Consider the closed set C = ϕ(X \ U) ∩ V ) of An
k . Since C doesn’t contain

the image of U under ϕ, it is not all of An
k hence dimC < n. Note that for any Zariski

closed set C = V (f1, ..., fn) we can construct a sequence of points Pi converging to ϕ(P ), by
openness of O2. Moreover, we can ensure that all Pi ∈ O2 \C. To see why, observe that the
polynomials fi are all continuous in the analytic toplogy. Since V (fi) = f−1

i (0), we conclude
that C is also closed in the analytic topology, hence O2 \ C is analytically open. It now
follows that θ−1(Pi) ∈ U(k) and by continuity of θ we have

θ−1(limPi) = lim θ−1(Pi) = P

�

Proposition 22. Fix a place p of Q. Then for any P ∈ X(Qp),

invvp(A(P )) =

{
0 p 6= 2
1
2

p = 2

Proof. Let X0 be the affine surface in A3 given by y2 + z2 = (3 − λ2)(λ2 − 2). Since X is
smooth, Lemma 9 shows that X0(Qp) is p-adically dense in X(Qp). By Lemma 3, invvp ◦ evA
is a continuous function on X(Qp), hence it suffices to prove the result for P ∈ X0(Qp).
For each P ∈ X0(Qp), A(P ) defines a quaternion algebra in Br(Qp). In particular, Remark 6
gives a description of A as a cyclic algebra where j2 = −1 and i2 = x with x = 3−λ2, λ2−2,
or 3/λ2−1. Proposition 7 allows us to easily compute the image of A(P ) under the invariant
map and tells us that invvp(A(P )) = 0 if and only if x(P ) ∈ NQp(i)/Qp(Qp(i)

×). In other
words,

invvp(A(P )) =

{
0 A(P )is split
1
2
A(P )is non-split
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Case 1: p /∈ {2,∞}
If vp(λ) < 0 then vp(3/λ

2 − 1) = min{vp(3) − 2vp(λ), 0}. Note that vp(3) = 0 or 1 but
−2vp(λ) > 0 hence vp(3)−2vp(λ) > 0 and vp(3/λ

2−1) = 0. This implies that 3/λ2−1 ∈ Z×p .
If vp(λ) ≥ 0 then

0 = vp(1) = vp(3− λ2 + λ2 − 2) ≥ min{vp(3− λ2), vp(λ
2 − 2)}

which implies that

min{vp(3), vp(λ
2)} ≤ vp(3− λ2) ≤ 0 or min{vp(2), vp(λ

2)} ≤ vp(λ
2 − 2) ≤ 0

hence one of 3− λ2 or λ2 − 2 are in Z×p .
Now, we can recognize A(P ) as an element of Br(Zp) via the definition of an Azumaya
algebra over the ring Zp. It is given by a Zp-algebra Ap that is free and of finite rank as a
Zp-module, such that Ap ⊗Zp k(x) is a central simple algebra over k(x), where k(x) denotes
the residue field of x ∈ Zp. We can now see that evA(P ) = A(P ) = (u,−1) with u ∈ Z×p . By
considering the Azumaya algebra Ap := Zp ⊗ Zpi ⊗ Zpj ⊗ Zpij, with multiplication defined
as for A(P ), we have that Ap ∈ BrZp. Moreover, Ap⊗Zp Qp = A(P ) thus Ap maps to A(P )
under BrZp → BrQp and BrZp = 0 by Corollary 4. This implies that A(P ) is trivial in
BrQp hence invvp(A(P )) = 0.
Case 2: p =∞
Any P ∈ X0(R) satisfies

(3− λ(P )2)(λ(P )2 − 2) = y2 + z2 > 0

hence either
(3− λ(P )2) ≥ 0 and (λ(P )2 − 2) ≥ 0

or
(3− λ(P )2) ≤ 0 and (λ(P )2 − 2) ≤ 0

The latter isn’t possible for if it were we could have 3 ≤ λ(P )2 ≤ 2. Since the former holds
then

(3− λ(P )2), (λ(P )2 − 2) ∈ R>0 = NC/R(C×)

implying that A(P ) = 0 ∈ BrR by Proposition 1, thus invv∞(evA(P )) = 0.
Case 3: p = 2
Let P ∈ X(Q2) and recall that an element x ∈ Z2 is not of the form a2 + b2 if x ≡ −1
(mod 4). We consider three possibilities.
If v2(λ(P )) > 0 then λ(P )2 ≡ 0 (mod 4) hence 3− λ(P )2 ≡ 3 ≡ −1 (mod 4)
If v2(λ(P )) = 0 then λ(P )2 ≡ 1 (mod 4) hence λ(P )2 − 2 ≡ −1 (mod 4)
If v2(λ(P )) < 0 then 1

λ(P )2
≡ 0 (mod 4) hence 3/λ(P )2 − 1 ≡ −1 (mod 4)

We can see that in all three cases, A(P ) = (x,−1) where x is not a norm from Q2(i)/Q2,
hence by Proposition 1, A(P ) is non-split and invv2(A(P )) = 1

2
.

�

Corollary 9.
X(Ak)

A = ∅

Proof. From Proposition 22, it follows that
∑

v∈Ωk
invv(evA(Pv)) = 1

2
so

X(Ak)
A = {(Pv) ∈ X(Ak) :

∑
v∈Ωk

invv(evA(Pv)) = 0} = ∅
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This impies that X(Q) = ∅. �

6. Potential Hasse Principle Violations for Châtelet Surfaces

6.1. Remaining Questions. Having seen an example of a Châtelet surface that fails the
Hasse principle, it is natural to wonder what can be said about Châtelet surfaces X/k such
that X(Ak) = ∅. In particular, given such a surface, can we find an extension L/k such that
X(L) = ∅ while X(AL)Br 6= ∅? Since all failures of the Hasse principle are explained by
the Brauer-Manin obstruction [CTSSD87], this is precisely what one would need to conclude
that X fails the Hasse principle over L.

Definition 13. Given a nice variety X/Q such that X(Q) = ∅ we say X is a potential
Hasse principle violation if there exists an extension L/Q such that X(L) = ∅ and
X(Lw) 6= ∅ for all valuations w extending the discrete valuations vp on Q.

In 2011, Pete Clark examined questions involving potential Hasse principle violations for
curves over global fields [Cla09]. In particular, he conjectured the following

Conjecture 1. Every curve C/k of genus ≥ 2 with X(k) = ∅ is a potential Hasse principle
violation

This conjecture is still open. More recently, related questions have been asked for surfaces.
In particular

Question 1. Is every Châtelet surface X/k with X(Ak) = ∅ a potential Hasse principle
violation?

In 2019, Bianca Viray and Brendan Creutz investigated a related question and obtained
a positive result.

Theorem 8. (Creutz-Viray) Let X/k be a Châtelet surface. There exists a finite set of
places S ⊆ Ωk and a set of local quadratic extensions Lv/kv for all v ∈ S, such that if F/k
is a quadratic extension with Fv = Lv for all v ∈ S then X(AF )Br = X(AF ) 6= ∅.

This theorem lends itself to the following question

Question 2. Can one characterize the Châtelet surfaces that are potential Hasse priciple
violations?

Additionally, (Creutz-Viray) posed the question for quadratic extensions. That is, for
what quadratic extensions can one obtain a global point? It was proven that this can be
done for almost all of them, but the ones in which you can not, remain to be determined.
This result marks the obvious starting point in answering question 2.

Remark 10. Theorem 6 makes a considerable reduction in approaching this problem. In
particular, the results tell us that the Châtelet surfaces that we aim to characterize are given
by

y2 − az2 = f(λ)g(λ)

where f, g are irreducible quadratics.
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Mathématique. Revue Internationale. IIe Serie (1959). ↑4.2

[Cla09] L. Pete Clark, On the Hasse principle for Shimura curves, Israel J. Math. 171 (2009). ↑6.1
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