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DETECTING PROPERTIES FROM DESCRIPTIONS OF GROUPS

IVA BILANOVIC, JENNIFER CHUBB, AND SAM ROVEN

Abstract. We consider whether given a simple, finite description of a group in the
form of an algorithm, it is possible to algorithmically determine if the corresponding
group has some specified property or not. When there is such an algorithm, we say
the property is recursively recognizable within some class of descriptions. When
there is not, we ask how difficult it is to detect the property in an algorithmic
sense.

We consider descriptions of two sorts: first, recursive presentations in terms
of generators and relators, and second, algorithms for computing the group op-
eration. For both classes of descriptions, we show that a large class of natural
algebraic properties, Markov properties, are not recursively recognizable, indeed
they are Π0

2
-hard to detect in recursively presented groups and Π0

1
-hard to detect

in computable groups. These theorems suffice to give a sharp complexity measure
for the detection problem of a number of typical group properties, for example,
being abelian, torsion-free, orderable. Some properties, like being cyclic, nilpotent,
or solvable, are much harder to detect, and we give sharp characterizations of the
corresponding detection problems from a number of them.

We give special attention to orderability properties, as this was a main motiva-
tion at the beginning of this project.

1. Introduction

The complexity of the word, conjugacy, and isomorphism problems of finitely pre-
sented groups have long been of interest in combinatorial group theory and algebra in
general ([8, 9]). Questions of whether and how the presentation of a group in terms
of generators and relators can shed any light on the existence of algorithms that uni-
formly solve these problem, or that can determine whether or not the group has some
other property of interest, have been studied, though primarily for finite presenta-
tions of groups. Here, we generalize some of these results to recursive presentations
of groups.

Additionally, in computable structure theory, we can consider the detection of a
property from another type of basic description of a group, its atomic diagram (i.e.,
its multiplication table). A group is computable when it is computable as a set and
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the group operation is computable, that is, finitely describable in the form of an
algorithm.

From both vantage points, we are asking whether there an algorithm that may be
applied uniformly for all descriptions in some class of descriptions of groups, that
will answer the question,

Does the group with description D have property P or not?

When there is such an effective procedure, we say the property is recursively recog-
nizable within that class of descriptions.

In the 1950’s, Adian and Rabin showed that an entire class of properties, Markov
properties (see Definition 2 below), are not recursively recognizable in the class of
finitely presented groups ([1, 2, 23]). Among many others, these properties include
having a decidable word problem, being nilpotent, abelian, simple, torsion-free, and
free. (See [19] for an excellent survey.)

In the language of the Kleene-Mostowski arithmetical hierarchy of sets, Adian and
Rabin’s proofs established the Σ0

1-hardness (see Definition 1 below) of detection of
Markov properties in the class of finitely presented groups. Some of these properties
are immediately seen to be Σ0

1-complete via their Σ0
1 characterizing formulas. For

example, a finite presentation of a group yields the trivial group if and only if there
exists a finite sequence of Tietze transformations that transform the given presen-
tation into 〈x | x〉, which is a Σ0

1 characterization of triviality for finitely presented
groups (see, for example, [18]).

In the 1960’s, Boone and Rogers considered questions posed by Whitehead and
Church in the late 1950’s [4]. Whitehead asked if the collection of finite presentations
of groups having decidable word problem, though it is not a recursive set, could be
recursively enumerated. Church asked about the possible existence of a universal
partial algorithm capable of solving the word problem for all finitely presented groups
that have decidable word problem. Boone and Rogers answered both questions by
establishing the precise complexity of the question “Given a finite presentation of a
group, does the corresponding group have a decidable word problem?” They showed
that this question is Σ0

3-complete in the arithmetical hierarchy, and negative answers
to the questions of Whitehead and Church follow.

The precise complexity of identifying other properties from group presentations
have since been studied. For example, in the 1990’s, Lempp showed that detecting
torsion-freeness (a Markov property) is Π0

2-complete in the class of finitely presented
groups [13].

In computable structure theory, recursive recognizability of a property amounts to
the index set of groups that exhibit the property being a computable set relative to
the set of indicies of all computable groups. An index set is the set of indicies (i.e.,
Gödel codes) of computable structures of some sort. In [6], the authors characterize
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the complexity of detecting rank-k free groups and show that it is d − Σ0
2 complete

in the class of computable free groups. They also show that determining whether an
arbitrary computable group is free is Π0

4-complete.
In [5], in a similar vein, the authors determine the complexity of the set of all indices

for computable isomorphic copies of a given structure (finite structures, vector spaces,
Archimedean real closed ordered fields, and certain p-groups). Their techniques
utilize structure-characterizing Scott formulas in infinitary logic.

We were originally motivated by the question of identifying orderability proper-
ties of groups from simple (i.e., finite) descriptions, like an algorithm for an atomic
diagram or for enumerating a presentation. While we do discuss our results in that
context in Sections 5.1 and 5.2, we begin with some more general results, their im-
mediate corollaries, and completeness results for other natural abstract properties of
groups.

2. Definitions

A group G is said to be finitely presented if it is described by finitely many gener-
ators and relators, 〈x0, x1, . . . , xn | R0, R1, . . . , Rk〉. A group is recursively presented
(we will write r.p.) when it is described by a computable set of generators and there
is an algorithm for enumerating the (possibly infinite number of) relators (see [16]).
It is not hard to show that if the set of relators is recursively enumerable, then it
is possible to obtain (in a uniform way) a recursive presentation on the same set of
generators.

For purposes of characterizing complexity, we will use the following framework
(note that this definition is equivalent to that given in [6]).

Definition 1. Let Γ be a complexity class in the arithmetical hierarchy and A an
index set for some collection of recursive presentations of groups (or atomic diagrams
of computable groups). We say detecting property P is Γ-complete in A if the
following hold.

(1) There is a Γ formula φ(e) so that B = A ∩ {e ∈ N | φ(e)} is exactly the
set of indices of recursive presentations of groups (or atomic diagrams of
computable groups) which exhibit property P .

(2) For any Γ set S, there is a computable function f : N → A so that e ∈ S if
and only if e ∈ B.

Whenever (1) holds, we say detecting P is Γ in A, and when (2) holds, we say
detecting P is Γ-hard in A.

For example, let A be the set of all indices of computable groups, and P the property
“abelian”. This property is described by the Π0

1 formula ∀x, y xy = yx, so the
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corresponding detection problem is Π0
1 in the class of computable groups (later we

will see that it is Π0
1-complete).

Definition 2. An property P of groups is Markov for a class C of groups if there is
a group G+ ∈ C which exhibits the property, and there is a group, G− ∈ C, so that
for any group H, if there is a injective homomorphism from G− into H, H fails to
have property P .

Rabin’s Theorem (1.1 in [23]) asserts that Markov properties of finitely presented
groups are not recursively recognizable in that class. It follows from the works of
Collins and Lockhart([7], [14]) that the same holds true in the class of computable
groups. A look at the respective proofs reveals that Rabin showed Σ0

1-hardness of
Markov properties for finitely presented groups, and Lockhart showed these proper-
ties are Π0

1-hard to detect in computable groups.
The table below summarizes most of the results in this article.

Property Class of r.p. groups Class of computable groups

Markov property Π0
2-hard Π0

1-hard (given an infinite G+)

Abelian Π0
2-complete Π0

1-complete

torsion-free Π0
2-complete Π0

1-complete

trivial Π0
2-complete n/a

divisible Π0
2-complete Π0

2-complete

torsion Π0
2-complete Π0

2-complete

totally left-orderable Π0
2-complete Π0

1-complete

totally bi-orderable Π0
2-complete Π0

1-complete

finite Σ0
3-complete n/a

decidable word problem Σ0
3-complete n/a

cyclic Σ0
3-complete in Σ0

3

nilpotent Σ0
3-complete Σ0

2-complete

solvable Σ0
3-complete Σ0

2-complete

finitely presentable Σ0
3-complete in Σ0

4

We use standard computability-theoretic notation throughout (as in [24]), denot-
ing the eth partially computable function on the natural numbers in some fixed,
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acceptable enumeration Turing machines by ϕe, and its domain by We. We,s is the
sth finite approximation of We, and we assume throughout that the cardinality of
We,s+1−We,s is at most one. A group is computable if its atomic diagram is computed
by some ϕe.

3. Decision problems in recursively presented groups

3.1. A general theorem. We begin by considering detection of Markov properties
in the class of recursively presented groups, which contains both finitely presented
groups and all computable groups.

In what follows, we will conflate the presentation of a group with the group itself
on occasion.

Theorem 3. Let P be a Markov property for r.p. groups. Detection of P is Π0
2-hard

in the class of r.p. groups.

Proof. We reduce the set of indices of the infinite c.e. sets, INF = {e | |We| = ω} to
the detection of P .

Let

G+ = 〈x0, x1, . . . | R0, R1, . . .〉 = 〈x | R(x)〉

and

G− = 〈y0, y1, . . . | S0, S1, . . .〉 = 〈y | S(y)〉

witness that P is Markov for r.p. groups as in Definition 2 above. For each e ∈ N,
we give a recursive presentation of a group Ge so that Ge has property P if and only
of e ∈ INF.

We will need to include multiple copies of the presentation of G− on different sets
of generators, and so will write

G−(yi) = 〈yi,0, yi,1, . . . | S0, S1, . . .〉 = 〈yi | S(yi)〉,

that we may specify distinct generating sets. Let A ∗ B denote the free product of
groups A and B.

Construction.
Stage 0. Initialize by setting

Ge,0 = G+ ∗G−(y0) ∗G−(y1) ∗ · · · = 〈x,y0,y1, . . . | R(x),S(y0),S(y1), . . .〉,

and n = 0.

Stage s+ 1. The stage begins with the presentation Ge,s = Ge,0 if n = 0 or, if n > 0,
the presentation

Ge,s = 〈x,y0,y1, . . . | y0, . . . ,yn−1,R(x),S(y0),S(y1), . . .〉.
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If We,s+1 −We,s is empty, set Ge,s+1 = Ge,s. Otherwise, set

Ge,s+1 = 〈x,y0,y1, . . . | y0, . . . ,yn,R(x),S(y0),S(y1), . . .〉,

and increment n.
Let Ge be the limit limsGe,s.

End of construction.

It is easy to see that Ge is a r.p. group. If We is of finite cardinality n, then Ge is
the group with presentation

Ge = 〈x,y0,y1, . . . | y0, . . . ,yn−1,R(x),S(y0),S(y1), . . .〉,

which is isomorphic to G+∗G−∗G−∗· · · , so contains G− as a subgroup and therefore
does not have property P .

If We is infinite, the presentation that results from the construction is

Ge = 〈x,y0,y1, . . . | y0,y1, . . . ,R(x),S(y0),S(y1), . . .〉,

which is isomorphic to G+ and so does have property P .
�

It follows that detection of any Markov property that can be characterized by
a finitary Π0

2 formula, or by a computable infintary Π2 formula, is a Π0
2-complete

decision problem (see [3], especially Theorem 7.5, for more on computable infintary
formulas). Some examples of such properties are included in the corollary below.

It should be noted that in a r.p. group, equality is not generally a computable
predicate, but it is Σ0

1 (and inequality is consequently Π0
1). Throughout, we will

write =G to denote equality in the group G, FG for the free group on its generators,
and 1G for its identity.

It is easy to see that words in FG which evaluate to the identity in group G can
be algorithmically enumerated. So, when we write “w =G v” for some w, v ∈ FG, we
mean that “∃s ∈ N wv−1 ∈ 1G,s”, where 1G,s is the sth finite approximation of the
set of words in FG which evaluate to the identity in G.

Corollary 4. Detection problems for the following properties are Π0
2-complete in the

class of recursively presented groups.

• Being abelian.
• Being torsion-free.
• Being trivial.
• Being divisible.
• Being a torsion group (in which all elements have finite order).
• Being totally left- or bi-orderable (see Sections 5.1 and 5.2 below).
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Proof. Abelian groups are precisely those G which satisfy the formula

∀w ∈ FG ∀v ∈ FG wv =G vw,

which is Π0
2 as =G is a Σ0

1 predicate. Set G+ = 〈x | 〉 and G− = 〈x, y | 〉 and apply
the theorem.

Torsion-free groups are characterized by the formula

∀w ∈ FG ∀n ∈ N (w =G 1G ∨ wn 6=G 1G),

which is Π0
2 (again due to the fact that equality is enumerable). Set G+ = 〈x | 〉 and

G− = 〈y | y2〉 and apply the theorem.

For triviality, the characterizing formula is ∀w ∈ FG w =G 1G, which is Π0
2. Let

G+ = 〈x | x〉 and G− = 〈y | 〉 and apply the theorem.

Group G is divisible if and only if

∀w ∈ FG ∀n ∈ N>0 ∃v ∈ FG (w =G 1G ∨ vn =G w),

which is again Π0
2. Set G+ = 〈x1, x2, . . . | xp

1 = 1, xp
2 = x1, x

p
3 = x2, . . .〉, the Prüfer

group, Z(p∞), for some prime p, and G− = 〈x | 〉 and apply the theorem.

Torsion groups are characterized by the formula

∀w ∈ FG ∃n ∈ N (wn =G 1G),

which is Π0
2. Set G+ = 〈x | x2〉 and G− = 〈y | 〉 and apply the theorem.

The characterization of orderability appears in Section 5.1 below.
�

3.2. Completeness at higher levels of the arithmetical hierarchy.

Theorem 5. Detecting finiteness is Σ0
3-complete in r.p. groups.

Proof. A Σ0
3 formula characterizing finiteness is

∃n ∈ N ∃{w1, . . . , wn} ∈ (FG)n ∀v ∈ FG v ∈G {w1, . . . , wn},

where “∈G” abbreviates the Σ0
1 formula saying that v is equal (in G) to one of the

wi’s.
To show completeness, we reduce COF = {e ∈ N | |We| < ω} to the detection

problem. For all e ∈ N, set

Ge = 〈x0, x1, . . . | [xi, xj], x
2
i , for all i, j ∈ N, and xk for all k ∈ We〉,

where [x, y] denotes the commutator of group elements x and y. Now, if We is cofinite
with |We| = n, we have Ge

∼= Zn
2 . If it is not, Ge

∼= Zω
2 .

�



8 IVA BILANOVIC, JENNIFER CHUBB, AND SAM ROVEN

Theorem 6. Detecting a group with a decidable word problem is Σ0
3-complete in

r.p. groups

Proof. Let G = 〈x1, x2, . . . | R1, R2, . . .〉 be a r.p. group.
The property “has a decidable word problem” is characterized by the Σ0

3 formula

∃e ∈ N ∀w ∈ FG ∃s ∈ N (ϕe,s(w) ↓ ∧ (ϕe,s(w) = 1 ↔ w =G 1G)).

Accounting for enumerability of equality and rewriting in prenex normal form yields
an equivalent formula more easily seen to be Σ0

3,

∃e ∈ N ∀w ∈ FG ∀t2 ∈ N ∃t1 ∈ N ∃s ∈ N

[(ϕe,s(w) ↓) ∧ (ϕe,s(w) 6= 1 ∨ w ∈ 1G,t1) ∧ (ϕe,s(w) = 1 ∨ w 6∈ 1G,t2)] .

For completeness, consider Ge = 〈a, b, c, d | anban =G cndcn, n ∈ We〉. The group
Ge has a decidable word problem if and only if e is in the Σ0

3-complete set REC =
{e ∈ N | We is recursive}.

�

Theorem 7. Detecting a cyclic group in the r.p. groups is Σ0
3-complete.

Proof. The property of being a cyclic group is characterized by the Σ0
3 formula

∃w ∈ FG ∀v ∈ FG ∃n ∈ N>0 (v =G 1G ∨ wn =G v).

For completeness we reduce COF as follows, making use of the fact that the product
of cyclic groups of the form Zn and Zm is cyclic if and only if n and m are relatively
prime. Let pn be the nth prime number. For each e ∈ N, we enumerate a presentation
of Ge as the limit of groups Ge,s.

Construction.
Stage 0. Initialize Ge,0 = 〈x0, x1, . . . | xp0

0 , xp1
1 , . . . , and ∀i, j ∈ N [xi, xj ]〉 .

Stage s+1. If We,s+1−We = ∅, set Ge,s+1 = Ge,s. Otherwise, if n ∈ We,s+1−We, add
xn to the relators of the presentation of Ge,s to obtain the presentation for Ge,s+1.

Let Ge = limsGe,s.
End of construction.

The construction gives a recursive presentation for a group which is a finite direct
sum of cyclic groups of relatively prime orders if the set We is cofinite, and is an
infinite direct sum of such groups otherwise.

�

Theorem 8. Detecting a nilpotent group is Σ0
3-complete in r.p. groups (even in the

class of r.p. residually nilpotent groups).
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Proof. Recall that a group G is nilpotent if it has a central series of finite length.
We consider the lower central series of G, that is

G = G0 ≥ G1 ≥ . . . ≥ Gn = {1G},

where for each i ≤ n, Gi+1 = [Gi, G]. The finiteness of this series can be expressed
as a Σ0

3 formula as

∃n ∈ N ∀~g ∈ Gn [[...[g0, g1], g2]...], gn] =G 1G,

where [x, y] denotes the commutator x−1y−1xy.
For completeness we build a presentation for a group Ge in stages so that We is

cofinite if and only if Ge is nilpotent.
Let {Hn}n>0 be a sequence of uniformly r.p. nilpotent groups with strictly in-

creasing nilpotency class, Hn is has nilpotency class n. For example, we can set
Hn = Zpn ≀ Zpn , where ≀ denotes the wreath product,1 and pn is the nth prime num-
ber. It is well known that for any prime p the regular wreath product Zp ≀ Zp is
isomorphic to the Sylow p-subgroup of the symmetric group Sym(p2) and has nilpo-
tency class p. Moreover, as these groups are finite, they have finite presentations.

For each n, we take a finite presentation for Hn = 〈an,1, . . . , an,kn | Rn,1, . . . , Rn,jn〉.

Construction.
Stage 0. Begin with Ge,0 as the direct sum,

⊕

n∈ω Hn given by presentation

〈am,k for m ∈ N, k ≤ km | Rm,j for m ∈ N, j ≤ jm, and [an,k, am,j] for n 6= m〉.

Stage s + 1. When n ∈ We,s+1 − We,s, enumerate the generators of Hn into the
relators of Ge,s to obtain Ge,s+1.

If We,s+1 −We,s = ∅, no action is required.
Let Ge = limsGe,s.

End of construction.

This construction yields a recursive presentation of group Ge, which is the direct
sum of finitely many nilpotent groups, and thus itself nilpotent, provided that e ∈
COF. If e 6∈ COF, then Ge is residually nilpotent but not nilpotent as it contains
subgroups of arbitrarily large nilpotency class.

�

Corollary 9. Determining whether a r.p. group is finitely presentable is Σ0
3-complete.

1For groups G and H and the left group action ρ of H on itself, the regular wreath product of G
by H is the semidirect product GH ⋊H where GH is the direct sum of |H |-many copies of G. The
regular wreath product is denoted G ≀H .
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Proof. Σ0
3-hardness follows immediately from the proof of Theorem 8, since Ge is

finitely presentable if and only if e ∈ COF. Being finitely presentable is characterized
(informally) by the statement below. Let G = 〈x1, x2, . . . | R1, R2, . . .〉. We write
g(x) for a finite sequence of words in the generators and their inverses, {x±1

i }i∈N, and
w(g) for a word on the elements of g and their inverses, and w(g) for a sequence of
such words.
Now, group G is finitely presentable if and only if the following Σ0

3 formula holds.

(∃g(x) ∈ F<ω
G )(∃w(g) ∈ Fg)(∀h ∈ FG)(∀u, v ∈ FG)(∀s, t ∈ N)(∃s′, t′ ∈ N)

(h =G v) ∧ (u ∈ 1G,s → u ∈ 1g,s′) ∧ (v ∈ 1g,t → v ∈ 1G,t′).

The theorem follows.
�

Theorem 10. Detecting a solvable group is Σ0
3-complete in the class of r.p. groups,

and even in the class of residually solvable r.p. groups.

Proof. Recall that group G is solvable if its derived series is finite. That is, there is
an n ∈ N so that

G = G0 ≥ G1 ≥ · · · ≥ Gn = {1G},

where for each i < n, Gi+1 = [Gi, Gi]. In the language of first-order logic, we can
write ∃n ∈ N ∀~g ∈ G2n,

[· · · [[g1, g2], [g3, g4]], · · · ], [· · · , [[g2n−3, g2n−2], [g2n−1, g2n]] · · · ] =G 1G,

i.e., every n-deep commutator of the correct form evaluates to the identity in G. This
is a Σ0

3 formula (the matrix as shown is Σ0
1), so it remains to show completeness.

As in the construction in the proof of Theorem 8, we will enumerate a presentation
of a group Ge which, when e ∈ COF, is isomorphic to a direct sum of finitely many
solvable groups, so is itself solvable. When e 6∈ COF, Ge will contain subgroups of
arbitrarily large solvability class.

For each n ∈ N, let Hn be the free solvable group of rank 2 and class n. That
is, Hn will be the quotient of the free group F2 by its nth derived subgroup. Hn is
computable uniformly in n ([21]), so has a recursive presentation.

As in the previous construction, we begin the construction with a presentation of
the direct sum Ge,0 =

⊕

n∈ω Hn. Whenever n ∈ We,s+1 − We,s, we enumerate the
generators of Hn into the relators of our presentation of Ge.

If e ∈ COF, Ge has solvability class max(We), and otherwise is residually solvable
but not solvable.

�
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4. Decision problems in the class of computable groups.

4.1. General theorem and immediate consequences. That decision problems
for Markov properties in the class of computable groups are Π0

1-hard follows from
work of Lockhart and Collins ([14, 7]). Here, we give a new proof which is entirely
constructive.

Theorem 11. Let P be a Markov property for computable groups and let G+ and
G− witness that P is Markov as in definition 2. Then detection of P is Π0

1-hard in
the class of computable groups.

Proof. Note that we may as well assume G− is infinite since G− is a subgroup of the
direct sum of itself with the (computable) additive group of integers, G− × Z. This
product is necessarily computable and fails to have property P by definition.

The strategy here is to use the computable atomic diagrams of G+ and G− to
build uniformly in e a computable atomic diagram of a group Ge so that Ge

∼= G+ if
ϕe(e) ↑, and Ge

∼= G+ ×G− if ϕe(e) eventually halts. If we can manage this, we will
have

e ∈ K ⇐⇒ Ge |= P.

Since K is a Π0
1-complete set, it follows that detecting P is Π0

1-hard.
Let G+ = {g0 = 1+, g1, . . .} and G− = {h0 = 1−, h1, . . .} be enumerations of the

groups witnessing that P is Markov without repetitions. The universe of Ge will
be N, and we give a coding map, 〈·〉, and enumerate the atomic diagram in stages
below.

Construction.
Stage 0. Let 〈(g0, h0)〉 = 0, and add (0, 0, 0) to the atomic diagram indicating that

(g0, h0) ∗ (g0, h0) = (g0, h0) in the group we are constructing.

Stage s + 1. We begin this stage with a coding map having an initial segment of
the natural numbers as its range, and a finite set of triples. There are three cases.

(1) ϕe,s+1(e) ↑. Let i be the least index of an element of G+ for which (gi, h0) has
not yet been assigned a code, and assign it the least available code. Next,
let j be the least index of an element of G+ for which there exists a k ≤ j
such that there is no tuple yet in the diagram for Ge indicating the product
(gj, h0) ∗ (gk, h0). For each such k ≤ j, assign both (gjgk, h0) and (gkgj, h0)
codes (if necessary), and add the corresponding triples to the diagram. For
example, if gjgk = gn in G+, and (gn, h0) does not already have a code, we
assign one to it, say m, and add the triple (〈(gj, h0)〉, 〈(gk, h0)〉, m) to the
diagram.

(2) ϕe,s+1(e) ↓ but ϕe,s(e) ↑. This is the exact stage where e enters the halting
set. After we have executed this stage once, all subsequent stages will be
instances of case (3).
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So far, we have a partial diagram of a copy of G+ × {1− = h0}. We now
begin to build out G− in the second coordinate. Assign fresh natural number
codes systematically to 〈(gi, h1)〉 for all i > 0 for which (gi, h0) has been
assigned a code, and add tuples to the diagram accordingly. (So, for example,
if 17 = 〈(g5, h0)〉, 39 = 〈(g4, h1)〉, g5g4 = g11 in G+, and 〈(g11, h1)〉 = 65, we’d
add (17, 39, 65) to the diagram.)

(3) ϕe,s(e) ↓. Here, e entered the halting set at some previous stage. Let i and
j be the least indices for which (gi, h0) and (g0, hj) have not been assigned
codes, and assign them codes. Add all tuples of the form

(〈(gu, hv)〉, 〈(gx, hy)〉, 〈(gugx, hvhy)〉)

for u, x ≤ i and v, y ≤ j (assigning codes as needed) to the diagram of Ge.

End of construction.

It is clear from the construction that the group is computable, and that when
e ∈ K, Ge is isomorphic to G+, and so has property P . If e ∈ K, Ge

∼= G+ × G−,
and will fail to exhibit P . �

Corollary 12. Detection of the following properties is Π0
1-complete in the class of

computable groups.

• Being abelian.
• Being torsion-free.
• Being totally left- or bi-orderable.

Proof. The characterizing formulas of these properties given in the proof of Corollary
4 become Π0

1 since equality (and inequality) is computable. Moreover, since finite
groups and free groups have computable copies and free groups are infinite, we can
take computable instances of the same witnesses as before and apply Theorem 11.

�

4.2. Completeness at higher levels of the arithmetical hierarchy.

Theorem 13. Detecting torsion groups is Π0
2-complete in the class of computable

groups.

Proof. The formula ∀g ∈ G ∃n ∈ N>0 (gn = 1G) is a Π0
2 formula characterizing

torsion groups.

To show completeness, we reduce the Π0
2-complete set, INF = {e ∈ N | |We| = ω},

of indices of finite sets to the index set of non-torsion groups. We construct for each
e ∈ N, a computable abelian group Ge that is non-torsion if and only if We is finite.
At each stage s, we give a set Gs = {0, x±1, x±2, . . . x±ks} of natural numbers indexed
by integers as the sth approximation of Ge. We will index elements of the universe
by integers, but in the end, the universe of the group will be the natural numbers.
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The group we build will be isomorphic to a group of the form

Zn1
× Zn2

× · · · × Znk
× · · ·

if We is infinite, or of the form

Zn1
× Zn2

× · · · × Znk
× Z

if We is finite. The values ni will be determined by the stages that elements appear
in the enumeration of We. For example, if the mth element appears at stage s and
(m + 1)st element appears at stage t, then nm+1 = 2(t−s)+1.

Each of the xi’s will behave like a tuple of integers under coordinate-wise addition.
We will arrange that the inverse of xi is x−i for each i. To simplify discussion, we
will denote the tuple assigned to the natural number xi by [xi].

So, for example, if the 17th and 18th elements added to the group are to “behave
like” (0, 1, 2) and (0,−1,−2), we would have [17] = [xj ] = (0, 1, 2) and [18] = [x−j ] =
(0,−1,−2) for some j, and observe that in our group, 17 + 18 = 0, since we will set
[0] = (0).

When we speak of computing sums of tuples of different lengths, we will as-
sume appended padding zeros at the end of the shorter tuple as necessary, i.e.,
(2, 3, 4) + (1, 3, 0, 5, 6) = (3, 6, 4, 5, 6), modulo ni in the ith component. The length
of a tuple is the length of the sequence up to the last non-zero entry (e.g., the length
of (0, 2, 45,−11, 0, 0, . . .) is 4).

At any given moment in the construction, we will have an element x that has not
been assigned a finite order, so has the potential to wind up being a non-torsion
element in the end. Whenever a new element enters We,s+1, we assign a finite order
to x by declaring a multiple of it to be the identity in such a way that we do not
interfere with any sums previously declared. Any time we add a new element to the
group, we will assign it and its inverse names, xi and x−i for some i ∈ Z.

Construction.
Stage 0. We will use x0 = 0 as the identity for our group, and begin the construction
with G0 = {x0 = 0, x1 = 1, x−1 = 2} where [x0] = [0] = (0), [x1] = [1] = (1), and
[x−1] = [2] = (−1). In what follows, we at times conflate the natural number xi and
the tuple [xi].

Stage s+ 1. We begin this stage with Gs = {x0, x±1, x±2, . . . x±ks}, and each of these
is mapped to some finite tuple of integers via the square bracket function. Let n be
the length of the longest tuple(s) in Gs, and let m be the largest positive value of
the nth components of elements of Gs. There are two cases:

Case 1. We,s+1 −We = ∅. In this case, we extend Gs to Gs+1 by computing the
coordinate-wise sums of all pairs of tuples in Gs, and assign fresh xi’s to sums that
are not already in Gs as needed. Note that the value in the nth component of the
resulting sums will be no more than 2m and no less than −2m.
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Case 2. We,s+1−We 6= ∅. When this is the case, we need to introduce torsion. To
do this, we extend Gs to Gs+1 by adding sums of pairs of tuples in Gs using modulo
4m addition in the nth component, but “shifted” by 2m from the usual notation. So,
for example, if m is 4, then we shall perform additions modulo 16, but shifted by 8
(so 5+7 is -4 rather than 12) to avoid having to change the square bracket function.
In the end, we have the values in the nth components between −2m and 2m − 1
only, and all subsequent additions in this component will be carried out modulo 4m
in this manner.

In Case 2, we also add two new tuples of length n+1, (0, . . . , 0, 1) and (0, . . . , 0,−1)
to Gs+1, and take pair-wise sums as described in Case 1.

Let Ge =
⋃

s Gs.
End of construction.

We finish the proof of the theorem with a sequence of lemmas.

Lemma 14. Ge is a computable group.

Proof. It is clear that Ge is a group. To compute the sum of xj and xk, execute the
construction to the stage s where both values have been added to Gs. At stage s+1,
their sum will be defined (and of course will not be changed later).

�

Lemma 15. If e ∈ FIN, then Ge has a non-torsion element.

Proof. If e ∈ FIN, then there is a stage s so that We,s = We,s′ for all stages s′ ≥ s.
From that stage on, only Case 1 in the construction will be executed, and the result
is a group isomorphic to

Zn1
× Zn2

× · · · × Znk
× Z

for some {n1, . . . , nk} ⊂ N where k is the cardinality of We. �

Lemma 16. If e ∈ INF, then Ge is a torsion group.

Proof. If e ∈ INF then there are infinitely many stages s for which We,s 6= We,s+1 so
the construction will execute Case 2 infinitely often.

Let x be a natural number that enters the group at stage s and [x] = (x1, x2, . . . , xn)
be of length n (so xn 6= 0). Note that for each i < n, the order of (0, . . . , 0, xi, 0, . . . , 0)
is determined by the stages t and t′, at which the (i− 1)st and ith elements entered
We, in particular, the order divides oi = 2(t′−t)+1.

Now let s′ > s be the least so that We,s 6= We,s′. In this stage, Case 2 will be
executed, so the element (0, . . . , 0, xn) will have finite order that divides 2(s′−s′′)+1,
where s′′ < s is the largest so that We,s′′ 6= We,s.

At the end of stage s′, the element x has finite order that divides o1o2 · · · on.
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�

We have shown that e ∈ INF if and only if Ge is a torsion group, and the proof is
complete.

�

Theorem 17. Detecting divisibility is Π0
2 -complete in the class of computable groups.

Proof. For computable groups, the characterizing formula for divisibility is still Π0
2:

∀g ∈ G ∀n ∈ N>0 ∃h ∈ H (g = 1G ∨ hn = g).

For completeness we reduce INF, the Π0
2-complete set of indices of infinite c.e. sets,

to the index set of divisible groups. For each e we construct the atomic diagram Me

of a group Ge isomorphic to (Q,+) if e ∈ INF and isomorphic to some non-divisible
additive subgroup of Q otherwise.

The domain of the atomic diagram, dom(Me), will be {g0, g1, . . .} = N where each
gi is the name assigned to some rational number [gi]. The atomic diagram Me will
be a set of triples (gi, gj, gk) where gk is the name assigned to the rational number
[gi] + [gj ].

Construction.
Stage 0: Set g0 = 0, g1 = 1, and g2 = −1. Begin the construction of the atomic
diagram with all triples (gi, gj, gk) for which no new name must be defined. That is,
Me,0 is the set of triples,

{(g0, g0, g0), (g0, g1, g1), (g1, g0, g1), (g0, g2, g2), (g2, g0, g2), (g1, g2, g0), (g2, g1, g0)}.

Stage s+1: We begin this stage with dom(Me,s) = {g0, g1, . . . gns
} and some set of

triples Me,s. First extend Me,s to Me,s+1 by adding the triples (gi, gj, gk) for all gi, gj
already in the domain of Me,s assigning new names as needed.

Next, if We,s+1 −We,s = ∅, proceed to the next stage. If We,s+1 −We,s 6= ∅, assign
the next available name gn to the rational 1

m
, where m = |We,s+1|.

Set Me =
⋃

s Me,s.
End of construction.

Observe, by the construction Me and dom(Me) are computable.
If e ∈ INF, the resulting group is a computable copy of (Q,+), a divisible group.

If e /∈ INF, no element of the group is divisible by any n > ne = |We| and we have
a computable copy of the subgroup of Q generated by {1, 1

2
, . . . 1

ne
}. The theorem

follows.
�

Theorem 18. Detecting nilpotency is Σ0
2 -complete in the class of computable groups.
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Proof. For computable groups, the characterizing formula for nilpotency is Σ0
2,

∃n ∈ N≥2 ∀~g ∈ Gn [[...[g0, g1], g2]...], gn] =G 1G,

where [x, y] denotes the commutator x−1y−1xy.
For completeness we reduce FIN, the Σ0

2-complete set of indices of finite c.e. sets,
to the index set of the nilpotent groups. For each e we construct the atomic diagram
Me of a group Ge which is nilpotent if and only if e ∈ FIN.

Let W (n) = Zpn ≀Zpn, where ≀ denotes the wreath product and pn is the nth prime
number. We note here that W (n) has nilpotency class pn and that it is finite.

Our construction will yield a computable group Ge that is a direct sum of the
additive group of integers and W (n)’s so that

Ge
∼=

{

Z×W (1) × . . .×W (n) |We| = n

Z×W (1) × . . .×W (n) × . . . |We| = ω
.

If e ∈ FIN, Ge will be nilpotent of class pn, and residually nilpotent otherwise.
The domain of Ge will be {g0, g1, . . .} = N, and we will approximate its diagram

Me by finite extension. We simultaneously build the isomorphism, and denote by
[gi] the tuple to which it corresponds. For each n ≥ 1, we write 1n for the identity
in W (n).

Construction.
Stage 0: Set g0 as the identity of Ge, that is [g0] = (0, 11, 12, . . .). To begin building
the copy of the integers in the first component set [g1] = (1, 11, 12, . . .) and [g2] =
(−1, 11, 12, . . .). Begin the construction of the atomic diagram with the set of triples
for which no new names must be assigned. So Me,0 is the set of triples,

{(g0, g0, g0), (g0, g1, g1), (g1, g0, g1), (g0, g2, g2), (g2, g0, g2), (g1, g2, g0), (g2, g1, g0)}.

Stage s+1: We begin this stage with dom(Me,s) = {g0, g1, . . . , gm} and some set of
triples Me,s.

First, extend Me,s with triples (gi, gj, gk) for all gi, gj ∈ dom(Me,s), assigning new
names for gk as needed.

Case 1. If We,s+1 −We,s = ∅, proceed to the next stage.
Case 2. If We,s+1 − We,s 6= ∅, let n = |We,s+1|. Assign fresh names, gj, to

(0, 11, 1n−1, . . . , w, 1n+1, . . .) for each w ∈ W (n), and add them to the domain (note
that there will be ppn+1

n − 1 such elements).
Let Me =

⋃

sMe,s.
End of construction.

The group Ge is clearly computable. Moreover, if e ∈ FIN, Ge
∼= Z×W (1)× . . .×

W (n) where n = |We|, and is a group of nilpotency class pn.
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If e /∈ FIN, Ge
∼= Z×W (1) × . . .×W (n) × . . ., which is residually nilpotent, but

not nilpotent. �

Theorem 19. Detecting a solvable group is Σ0
2-complete in the class of computable

groups.

Proof. The proof is essentially identical to the nilpotence proof except that rather
than using the finite groups W (n) in the construction, we use the uniformly com-

putable free solvable groups Hn = F2/F
(n)
2 , where F2 is the free group on two gen-

erators, and F
(n)
2 is the nth group in its derived series. These groups are infinite, so

the construction in this case requires routine dovetailing, and we spare the reader
the details.

�

5. Orderability

We now turn our attention to orderability properties, as this was a main motivation
at the beginning of this project.

We say a group G is partially left-ordered by relation � if the ordering relation is
invariant under the left action of the group on itself. Formally, if for all a, g, and h
in G

g � h → ag � ah.

The group is simply left-ordered when � is a total order on G. Similarly, the group
is partially bi-ordered when � is invariant under multiplication from both the left
and right, and bi-ordered when the ordering is total.

Every group has a trivial partial order (equality), and any group G with a non-
torsion element a admits a non-trivial partial order which includes the chain

· · · � a−2 � a−1 � 1G � a � a2 � · · · .

Note that torsion elements cannot be ordered relative to the group identity. For
instance if a 6= 1G is an element of order 3, then from 1G � a, it follows that
1G � a � a2 � 1G, and we deduce that a = 1.

Every order, partial or total, is equivalently described by its upper cone, the set
of elements greater than the identity under the ordering, since x � y if and only if
1G � x−1y. A subset P of a group G is the upper cone of a left-partial order if it
is a subsemigroup of G and for all non-identity g ∈ G, we have g ∈ P → g−1 6∈ P .
Moreover, P is the upper cone of a partial bi-order if it is a normal subsemigroup,
i.e., for all g ∈ G, gPg−1 ⊆ P . Finally, P is the upper cone of a total order if for
each g ∈ G, either g or its inverse is in P .

For more on the theory of ordered and orderable algebraic structures, see [11], [12],
and [20].
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5.1. Partial orderability and torsion. Every group is trivially partially orderable
with the upper cone containing only the identity element. The existence of a non-
trivial partial ordering is equivalent to the existence of a non-torsion element in the
group.

Corollary 20. Determining whether a group admits a non-trivial partial (left- or bi-)
ordering of its elements is Σ0

2-complete in the class of recursively presented groups.

Proof. In Corollary 4, it was noted that being a torsion group is Π0
2-complete in the

class of r.p. groups, and this corollary follows immediately. �

Corollary 21. The index set of groups admitting a non-trivial partial (left- or bi-)
ordering is Σ0

2-complete in the class of computable groups.

Proof. This observation follows immediately from Theorem 13. �

5.2. Bi-orderability. We consider now the question of total orderability. There is
a condition attributable independently to Ohnishi, Loś, and Fuchs [22, 15, 10] which
provides necessary and sufficient first order conditions for orderability.

Theorem 22 (Ohnish (1952),  Loś (1954), Fuchs (1958)). Group G is left-orderable
if and only if for every finite sequence (g1, . . . , gn) of non-identity elements of G,
there is a sequence (ǫ1, . . . , ǫn) ∈ {±1}n so that the subsemigroup of G generated by
{gǫ11 , . . . , g

ǫn
n } does not contain the identity 1G of G.

If we write ~g and ~ǫ for these sequences, and write sgr(~g ~ǫ) for the subsemigroup
generated by {gǫ11 , . . . , g

ǫn
n }, it is easier to see the complexity of this condition in

terms of the arithmetical hierarchy:

(5.1) ∀~g ∈ (G− {1G})<ω ∃~ǫ ∈ {±1}|~g| 1G 6∈ sgr(~g ~ǫ).

Since the existential quantifier is bounded, it may be disregarded. Moreover, if
equality is computable in the group, the subsemigroup sgr(~g~ǫ) can be algorithmi-
cally enumerated and computably checked against the identity, so the matrix of the
formula is equivalent to a Π0

1 formula. When the word problem in group G is com-
putable, the scope of the first universal quantifier, G − {1G}, is a computable set.
Hence, the index set of groups that are left-orderable is indeed Π0

1 for computable
groups.

Exactly the same formula applies to describe the class of bi-orderable groups with
only one modification: Rather than requiring that the subsemigroup sgr(~g ~ǫ) not
include the identity, it is required that the normal subsemigroup not include the
identity. We will write S(~g ~ǫ) for the normal subsemigroup generated by ~g ~ǫ.

It is natural to ask if it is “easier” to determine whether a group admits a bi-
ordering if we know already that it admits a left-ordering. We show that in both the
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class of computable groups and the class of r.p. groups, the answer is that it is not
easier.

Theorem 23. The set of indices of groups that admit a bi-ordering is Π0
1-complete

in the class of computable left-orderable groups.

Proof. The detection problem is in Π0
1 by virtue of formula (5.1) above.

For Π0
1-hardness, we construct for each e ∈ N, a group Ge which is bi-orderable

if and only if We is empty, and left-orderable in any case. Recalling that the index
set of the empty set is Π0

1-complete, we can accomplish this as follows: Begin enu-
merating reduced words on two generators, a and b, and their inverses. At stage
s, the approximation to the universe of Ge should include all words on a, b, a−1, b−1

of length less than or equal to s, and the approximation to the multiplication table
should include all the reduced free products of these having length less than or equal
to s.

The first time an element enters We at stage t, declare the product atb−t = ().
In subsequent stages, continue to enumerate the diagram of an isomorphic copy of
〈a, b | at = bt〉. As a one-relator group, it has decidable word problem, and the rest
of the diagram can be effectively determined [17].

If no element ever enters We, we’ll have built a copy of the free group on two
generators, which is bi-orderable (though certainly not trivially so2). If We 6= ∅,
Ge is a group with presentation 〈a, b | an = bn〉, which, though torsion-free and
left-orderable, is not bi-orderable for bi-orderable groups must have unique roots.

�

Theorem 24. Identification of bi-orderability is Π0
2-complete in the class of recur-

sively presented left-orderable groups.

2One can describe a bi-ordering via a Magnus expansion. To bi-order F2 = 〈a, b | 〉, consider the
ring of formal power series in non-commuting variables Xa and Xb, Z[Xa, Xb]. The map induced
by

a → 1 + Xa

a−1 → 1 −Xa + X2

a −X3

a + · · ·

b → 1 + Xb

b−1 → 1 −Xb + X2

b
−X3

b
+ · · ·

is an injective homomophism from F2 to Z[Xa, Xb], the image of which is the multiplicative subgroup
generated by F ′

2
= {1 + p(Xa, Xb) | each term in p(Xa, Xb) has degree at least 1.}. One can order

Z[Xa, Xb] by writing each power series in a standard form: write the terms in increasing degree,
and within each degree, order the terms lexicographically according to subscripts. To compare two
series, compare the coefficients of the first term on which they differ. The ordering inherited by the
subgroup F ′

2
pulls back to an ordering on F2 via the isomorphism described above.
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Proof. The formula in the previous proof does not suffice to put the problem in Π0
1

as the scope of the opening quantifier, G − {1G}, is not a computable set (it is co-
c.e.). Suppose G is recursively presented as 〈x0, x1, . . . | R0, R1, . . .〉. As before, we
write S(~g ~ǫ) for the normal subsemigroup generated by {gǫ11 , . . . , g

ǫn
n }. This is also

a recursively enumerable set, so let S(~g ~ǫ)s be its sth finite approximation.
In prenex normal form, with quantifiers over computable sets only, and computable

matrix, we give a Π0
2 characterization of bi-orderability of recursively presented

groups with the formula

∀~g ∈ F<ω
G ∃~ǫ ∈ {±1}|~g| ∀t ∈ N ∃s ∈ N (~g ∩ 1G,s = ∅ → 1G,t ∩ S(~g~ǫ)t = ∅).

To establish completeness, we describe an effective reduction procedure that yields
for any e ∈ N, a recursive presentation Pe of a group that is bi-orderable if and only
if e ∈ INF.

Construction.
Stage 0. Let P0 = 〈x0, y0, x1, y1, . . . | x2

0y
−2
0 〉.

Stage s+ 1. If We,s+1−We,s 6= ∅, then let n = |We,s+1| and add xn, yn, and x2
n+1y

−2
n+1

to the set of relators of Gs to obtain Gs+1.
If We,s+1 −We,s = ∅, do nothing, and proceed to the next stage.

End of construction.

If e 6∈ INF, the resulting group has presentation

〈x0, y0, x1, y1, . . . | x2
0y

−2
0 , . . . x2

ny
−2
n , x0, y0, . . . xn−1, yn−1〉,

where n = |We|. The group itself is the free product of a free group on infinitely many
generators (〈xn+1, yn+1, . . . | 〉) with the group with presentation 〈xn, yn | x2

ny
−2
n 〉,

which does not have unique roots. The group is, however, left-orderable. If e ∈ INF,
the resulting group is trivial, so bi-orderable. The theorem follows.

�
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