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0.1 Introduction

More to come on this page. For now just keep reading!
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Chapter 1

Systems of Linear Equations

1.1 Solving Linear Equations

We have all seen a linear system of equations at some point in gradeschool, and we first learned how to
attack these systems using the methods of substitution and elimination. We begin with a refreshing example
of a linear system with three equations and three unknowns.

Example 1.1.1.


x1 + x2 − x3 = 7

2x1 + 3x3 = 5

− 5x2 = −10

We define a solution of this system as an ordered triple of real numbers, (x1, x2, x3)︸ ︷︷ ︸
also called a 3-tuple

, which simul-

taneously satisfies all equations.
One solution of this system is (4, 2,−1) because

4 + 2− (−1) = 7

2(4) + 3(−1) = 5

and
−5(2) = −10

It is also worth noting that this solution is the same thing as an ordinary point in 3-dimensional Euclidean
space, and we are immediately able to talk about geometry (much more to come).

Next, we must get our hands around the vocabulary of linear systems, the first of which is distinguishing
one type of variable from another.

Definition 1.1.2. A variable that appears as the first (left-most) term of at least one equation is a leading
variable. In the above example, x1 and x2 are leading variables.

Definition 1.1.3. If a linear system has no solutions, then it is inconsistent. If a linear system has at
least one solution, then it is consistent.

Example 1.1.4.

{
2x1 − 3x2 + x3 = 8

2x2 = 5
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This is an example of a linear system with infinitely many solutions. In fact, for any real number t, the
tuple

(
31

4
− 1

2
t,

5

2
, t)

represents a solution and we can verify directly that it is a solution by plugging in 31
4 −

1
2 t for x1, 5

2 for x2,
and t for x3 and checking that all the t’s cancel to give equality.

Here, t is called a free variable or free parameter.

Now that we have some language to work with, we will need to investigate the possible forms a system
can have. In particular, there are two.

1. Triangular form: An example of a linear system in triangular form is
4x1 − 2x2 + 3x3 + x4 = 17

x2 − 2x3 − x4 = 0

5x3 + 2x4 = 20

3x4 = 15

We can solve a system like this using back substitution (using the last equation first). In doing this
we see that

3x4 = 15 =⇒ x4 = 5

We then apply this to the third equation and get

5x3 + 2x4 = 5x3 + 2(5) = 20 =⇒ 5x3 = 10 =⇒ x3 = 2

Applying the same procedure to the second and first equation we find that x2 = 9 and x1 = 6 (you
should verify this for yourself!). The final solution is then given by

(x1, x2, x3, x4) = (6, 9, 2, 5)

In general, triangular forms have three main properties:

• There are the same number of equations as variables.

• Every variable is the leading variable of exactly one equation.

• A triangular system has exactly one solution. We refer to this as a unique solution.

2. Echelon Form

This is the more general form that a linear system can have and we can characterize it according to
two (or three) main properties:

• Every variable is the leading variable of at most one equation.

• The system is organized in a descending stair-step pattern.

If a linear system satisfies both of these properties then we say the system is in echelon form.
The last porperty of a system in echelon form is

• There are either no solutions, exactly one solution, or infinitely many solutions.

To build off of the last point, we can actually say something more general.
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Theorem 1.1.5. Any system of linear equations has either

• No solutions (this is known as an inconsistent linear system).

• Exactly one solution.
or

• Infinitely many solutions.

The latter two cases define what we call a consistent linear system.

Example 1.1.6. The following linear system is in echelon form.{
3x1 − x3 = 7

x2 = 10

Example 1.1.7. The following linear system is not in echelon form because the linear equations do not
form a stair-step pattern.

3x1 + x2 − x3 = 7

x3 = 5

x2 + 9x3 = 11

Example 1.1.8. The following linear system is not in echelon form because x1 is the leading variable of
more than one equation.{

3x1 − x3 = 7

x1 + x2 = 9

Definition 1.1.9. For a system in echelon form, any variable that does not appear as a leading variable is
called a free variable, hence all variables in a system are either leading or free.

Here are some nice facts to remember about systems in echelon form.

1. If an echelon system has no free variables, it must be triangular and therefore has exactly one solution.

2. If an echelon system has at least one free variable, then it has infinitely many solutions.

Now that we have much of the needed vocabulary, lets end the section with a fully worked example.

Example 1.1.10. Consider the linear system{
2x1 − x2 + 5x3 − x4 = −30

x3 + x4 = −6

This is a system in echelon form with x1, x3 as leading variables and x2, x4 as free variables. We solve
the system in two steps.

Step 1: Denote free variables. Let x2 = t1 and x4 = t2 and remember these can be any real number!

Step 2: Plug the free variables into the system and solve for leading variables. Starting with the second
equation we have

x3 + t2 = −6 =⇒ x3 = −t2 − 6

7



Plugging this into the first equation we have

2x1 − t1 + 5(−t2 − 6)− t2 = −30 =⇒ 2x1 − t1 − 5t2 − t2 = 0 =⇒ 2x1 − t1 − 6t2 = 0

Using this to solve for x1 we get

2x1 = t1 + 6t2 =⇒ x1 =
1

2
t1 + 3t2

The (infinitely many) solutions of this linear system have the form

(x1, x2, x3, x4) = (
1

2
t1 + 3t2, t1,−t2 − 6, t2)

with t1, t2 as free variables.

1.2 Linear Systems and Matrices

In this section we dive deeper into the procedures for solving linear systems and in the process, encounter
matrices for the first time. These procedures will transform any linear system into one in echelon form and
produce a new linear system with the exact same solution set.

Definition 1.2.1. Two linear systems are equivalent if they have the same solution set. The notion of
being equivalent is denoted with the symbol “∼”.

The way in which we get from an arbitrary linear system to an echelon one is by applying elementary
row operations. These consist of three possible “moves” that transform a system into an equivalent one:

1. Interchange two equations.

2. Replace one equation with a non-zero multiple of itself.

3. Add one equation to a multiple of another.

Example 1.2.2.

{−4x1 + 5x2 = 20

x1 − 2x2 = 14

∼

{
x1 − 2x2 = 14

−4x1 + 5x2 = 20
(interchange equations)

∼

{
4x1 − 8x2 = 56

−4x1 + 5x2 = 20
(multiply equation 1 by 4)

∼

{
4x1 − 8x2 = 56

− 3x2 = 76
(add equation 1 to equation 2)

Notice the last (equivalent) system is in echelon form!

This example illustrates the general procedure, but the main tool that we use to streamline the procedure
is that of augmented matrices. When we solve a linear system, we are only working with the coefficients of
the linear equations, so we place the coefficients in an array called an augmented matrix.

Example 1.2.3. The linear system
x1 − 2x2 + 3x3 = 9

−x1 + 3x3 = −4

2x1 − 5x2 + 5x3 = 17
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has associated augmented matrix given by 1 −2 3 9
−1 0 3 −4
2 −5 5 17


We can now translate vocabulary from linear systems into that for matrices. Once we do this we will

never look back. Similar to that of linear systems, there are two special types of matrices.

1. Echelon Form.

• Every leading term (the first nonzero number in a row) is in a column to the left of the leading
term of the row below it.

• Any zero rows (rows of all zeroes) are at the bottom.

In general, we call any leading term of a non-zero row a pivot.

Example 1.2.4. 3 0 4 5
0 1 3 0
0 0 0 0


is a matrix in echelon form with pivots being the entries 3 and 1.

The matrices 0 1 0 3
4 5 6 1
0 0 0 0

 ,
0 0 0

0 1 1
0 0 2

 ,
1 2 3 4

2 3 4 5
0 0 0 0


are all not in echelon form. Can you see why?

2. Reduced Echelon Form.

• It is in echelon form.

• All pivot positions contain a 1.

• All other entries in a pivot column(a column that contains a pivot) are 0.

Example 1.2.5.

1 0 0 0
0 1 1 2
0 0 0 0

 is a matrix that is in reduced echelon form.[
0 1 0 0
1 0 2 1

]
is neither in echelon nor reduced echelon form.2 0 1 3

0 −1 1 4
0 0 0 1

 is in echelon form but not in reduced echelon form.1 0 2 1
0 1 3 4
0 0 1 0

 is also in echelon form but not in reduced echelon form.

When working through a solution to a linear system, we can easily follow our own steps by adopting the
following notation for row operations.

1. Interchange row i and row j is denoted
Ri ↔ Rj
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2. Replacing row i with a non-zero multiple (c) times row j is denoted

cRi → Ri

3. Adding a non-zero multiple of row i to row j and applying the change to row j is denoted

cRi +Rj → Rj

In practice, we will use these row operations to transform augmented matrices into systems that are in
echelon or reduced echelon form, at which point we will be able to solve them by back substitution.

This whole process will be most easily learned via examples so let’s jump right in with a continuation of
Example 1.2.3.

Example 1.2.6.  1 −2 3 9
−1 0 3 −4
2 −5 5 17


(R1 +R2 → R2) =⇒

1 −2 3 9
0 −2 6 5
2 −5 5 17


(−2R1 +R3 → R3) =⇒

1 −2 3 9
0 −2 6 5
0 −1 −1 −1


(−1

2
R2 → R2) =⇒

1 −2 3 9
0 1 −3 −5/2
0 −1 −1 −1


(R2 +R3 → R3) =⇒

1 −2 3 9
0 −2 6 5
0 0 −4 −7/2


︸ ︷︷ ︸

echelon form!

This matrix represents the (triangular) linear system
x1 − 2x2 + 3x3 = 9

x2 + 6x3 = −5/2

− 4x3 = −7/2

hence we can use back substitution to obtain the (unique) solution

(x1, x2, x3) = (−113/8,−41/4, 7/8)

Definition 1.2.7. The process of using row operations (like above) to transform a matrix into echelon form
is called Gaussian Elimination.

We can take this one step further, if we prefer, by reducing the given matrix to reduced echelon form.
This is known as Gauss-Jordan Elimination.

Example 1.2.8. Use Gauss-Jordan elimination to solve the linear system
x1 − 3x3 = −2

3x1 + x2 − 2x3 = 5

2x1 + 2x2 + x3 = 4
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We begin with the augmented matrix for this linear system and write a string of equivalent matrices,
ending with the reduced echelon form. We leave the row operations to be determined by the reader.1 0 −3 −2

3 1 −2 5
2 2 1 4

 ∼
1 0 −3 −2

0 1 7 11
0 2 7 8

 ∼
1 0 −3 −2

0 1 7 11
0 0 −7 −14

 ∼
1 0 −3 −2

0 1 7 11
0 0 1 2


We note here that at this point we could stop and use back substitution, we have performed Gaussian
elimination and have arrived at the echelon form. Continuing onward we have

∼

1 0 −3 −2
0 1 0 −3
0 0 1 2

 ∼
1 0 0 4

0 1 0 −3
0 0 1 2


Translating back to the linear system, we have the (unique) solution

(x1, x2, x3) = (4,−3, 2)

Before ending the chapter, we note that there is a methodical way to clear out entries of augmented
matrices, starting in the upper left corner, moving down column 1, then to the entry in the second column
and second row, then down the entire second column, etc. Having a methodical approach to row reductions
will reduce errors and make row reductions much easier with a little practice.
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Chapter 2

Euclidean Space

We now translate from the algebraic nature of linear systems to their underlying geometry. We begin with
a quick refresher on vectors and Euclidean space, then spend the majority of the chapter introducing the all
important notions of span and linear independence.

2.1 Vectors

Vectors are the fundamental object of linear algebra and we will use them frequently.

Definition 2.1.1. A vector is an ordered list of real numbers that can be expressed in two ways:

• Column vector

u =


u1

u2

...
un


• Row vector

u = (u1, u2, . . . , un)

We will use column vectors most of the time, but it is good to know that both notations can mean the
same thing.

Just like with real numbers, we can perform arithmetic with vectors. Let u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) with c a real number (also known as a scalar).

We can multiply vectors by scalars as follows

cu =

cu1

...
cun


We can also add two vectors, as long as they have the same number of coordinates.

u + v =


u1 + v1

u2 + v2

...
un + vn


Lastly, u = v if and only if u1 = v1, u2 = v2, . . . , un = vn.

12



Definition 2.1.2. The set of all vectors with n entries (components), together with the above operations of
scalar multiplication and vector addition, form what is known as n-dimensional Euclidean space. We denote
this space by Rn. For the vectors u and v defined above, we use the symbol “∈” to denote that the vector
lives in Rn. Similarly, since the scalar c is a real number, it lives in the set of real numbers, which we
denote by writing c ∈ R. We will use this notation frequently from now on.

In R2 and R3 we usually represent vectors with“arrows”. The previous three vector properties can also
be expressed geometrically.

• Two vectors are equal if and only if they have the same length and point in the same direction.

• Given a vector u, the vector cu (for c 6= 0, and c ∈ R) is parallel to u, with length equal to |c| times
the length of u. Multiplying a vector by a negative scalar switches the direction that it points in.

• Given u,v ∈ R, the vector u+v can be found by using the usual parallelogram law (or tip-to-tail rule)
from calculus 3.

Now that we have the fundamentals refreshed, we can move onto one of the central topics of the course.

Definition 2.1.3. If u1,u2, . . . ,um ∈ Rn and c1, c2, . . . , cm ∈ R then the vector

c1u1 + c2u2 + · · ·+ cmum

is called a linear combination of u1,u2, . . . ,um.

Example 2.1.4. Given the vectors u1 =

[
1
2

]
and u2 =

[
5
−3

]
, three different linear combinations of u1 and

u2 are

u1 + u2 =

[
6
−1

]
,u1 − u2 =

[
−4
5

]
, 2u1 + 30u2 =

[
152
−86

]
A very important idea tied to linear combinations is finding when a given vector is a linear combination

of a fixed set of vectors.

Example 2.1.5. Let v1 =

 1
0
−2

 .v2 =

2
1
1

, and v3 =

 5
2
−1

 and determine if b =

19
7
−9

 is a linear

combination of v1,v2,v3.

When approaching a question like this one, starting the problem is often the hardest part. How in the
world can we figure this out? We figure it out by assuming it is true and following our nose until we arrive
at two possible outcomes. Either we find a solution and we are done or the system is inconsistent and we
see that there is no such linear combination. The starting point of this problem is the most important
thing we will learn this far.

If b is a linear combination of v1,v2,v3 then there exist scalars c1, c2, c3 ∈ R such that

c1

 1
0
−2

+ c2

2
1
1

+ c3

 5
2
−1

 =

19
7
−9


This is how we always approach these problems. We find values for the ci or realize that they cannot exist.
The way in which we find the ci is by unpacking what it means for two vectors to be equal. Using vector
addition on the left hand side of the equation we get that c1 + 2c2 + 5c3

c2 + 2c3
−2c1 + c2 − c3

 =

19
7
−9
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which translates to the linear system


c1 + 2c2 + 5c3 = 19

c2 + 2c3 = 7

−2c1 + c2 − c3 = −9

We solve this linear system by solving the corresponding augmented matrix 1 2 5 19
0 1 2 7
−2 1 −1 −9

 ∼
1 0 0 2

0 1 0 −1
0 0 1 4


Note that all row reducing from now on will not be explicitly worked out. You are an expert row reducer
and you can work it out yourself!

Gauss-Jordan elimination here tells us that

(c1, c2, c3) = (2,−1, 4)

hence
b = 2v1 − v2 + 4v3

and we are done!

This example illustrated the best case scenario, that is, we wonder if a fixed vector is a linear combination
of some others, and we directly find the coefficients that give us the desired linear combination. If such a
linear combination does not exist, we unravel a different conclusion.

Example 2.1.6. Let v1 =

1
1
0

 ,v2 =

0
1
1

 ,v3 =

 2
1
−1

 , and b =

 1
3
−1

. Is b a linear combination of

v1,v2, and v3?

Just like we did in the previous example, we set up the corresponding linear system as if there did exist
such a linear combination. We then proceed by attempting to solve the linear system. In this case we get1 0 2 1

1 1 1 3
0 1 −1 1

 ∼
1 0 2 1

0 1 −1 2
0 0 0 −3


The equivalent matrix we have found represents an inconsistent linear system, therefore b is not a linear
combination of v1,v2, and v3

Before ending this section we make one last use of vector notation by expressing solution sets in terms
of linear combinations.

Example 2.1.7. Suppose we have the following linear system

{
4x1 − 2x2 + x3 − x4 = −5

x3 + x4 = 1

This linear system will have infinitely many solutions because there are two free variables. We can express
all such solutions in a compact way.

We first label the free variables, namely, x2 = t1 and x4 = t2. Then, using the second equation we get
that

x3 = 1− t2
Plugging all of this back into the first equation we see that

x1 =
−6 + 2t1 + 2t2

4
= −3

2
+

1

2
t1 +

1

2
t2

14



We then express this general solution in vector form by grouping together free variables, that is
x1

x2

x3

x4

 =


3
2 + 1

2 t1 + 1
2 t2

t1
1− t2
t2

 =


− 3

2
0
1
0

+ t1


1
2
1
0
0

+ t2


1
2
0
−1
1


The expression of a solution set in terms of a linear combination of vectors is known as the general solution
in vector form.

2.2 Span

In this section we dig deeper into the question “Can we express one vector as a linear combination of others?”
Geometrically, this is the same as asking if we can travel to a point in space, by moving along fixed directions.
For example, suppose we were a little dot in R2, located at the origin, and we wanted to find a path to the
point (a, b) but we could only move along a line with slope 1 or slope zero, i.e. we can only move parallel
to the line y = x or horizontally. By translating this into the language of linear algebra, we are asking if the

point (a, b) can be expressed as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
.

Can we get to the point (5, 3)? Yes!

3u1 + 2u2 =

[
5
3

]
hence the vector

[
5
3

]
is a linear combination of u1 and u2.

Example 2.2.1. We can extend the question to an arbitrary point in R2. That is, can we express any

vector

[
a
b

]
(for a, b ∈ R) as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
? If we could, then there would

exist scalars x1, x2 ∈ R auch that [
a
b

]
= x1

[
1
1

]
+ x2

[
1
0

]
Finding such values of the xi is equivalent to solving the linear system with augmented matrix[

1 1 a
1 0 b

]
By performing Gauss-Jordan elimination we see that[

1 1 a
1 0 b

]
∼
[
1 1 a
0 −1 b− a

]
∼
[
1 1 a
0 1 a− b

]
∼
[
1 0 b
0 1 a− b

]
hence x1 = b and x2 = a− b. In other words[

a
b

]
= b

[
1
1

]
+ (a− b)

[
1
0

]

and we can write any vector in R2 as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
. This example lends

itself to the central object of this section.

Definition 2.2.2. Suppose u1, . . . ,um ∈ Rn. The span of the vectors u1, . . . ,um denoted Span{u1, . . . ,um},
is the set of all linear combinations of u1, . . . ,um. In other words, Span{u1, . . . ,um} consists of all vectors
of the form

v = x1u1 + x2u2 + · · ·+ xmum
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for some scalars x1, x2, . . . , xn ∈ R.

If Span{u1, . . . ,um} = Rn we say that {u1, . . . ,um} spans Rn.

Note that in the above example we showed that Span
{[

1
1

]
,

[
1
0

]}
= R2 so

{[
1
1

]
,

[
1
0

]}
spans R2. Now

lets look at some more examples.

Example 2.2.3. Let u1 =

1
2
0

 ,u2 =

 2
−1
1

 and u3 =

4
0
1

. Show that {u1,u2,u3} spans R3.

Let v =

ab
c

 denote an arbitrary vector in R3. We need to show that there always exist scalars x1, x2, x3 ∈

R such that

x1

1
2
0

+ x2

 2
−1
1

+ x3

4
0
1

 =

ab
c


i.e. v is a linear combination u1,u2,u3.

In trying to solve the system corresponding to the vector equation above we see that1 2 4 a
2 −1 0 b
0 1 1 c

 ∼
1 2 4 a

0 −5 −8 b− 2a
0 1 1 c

 ∼
1 2 4 a

0 1 1 c
0 −5 −8 b− 2a


∼

1 2 4 a
0 1 1 c
0 0 −3 b− 2a+ 5c

 ∼
1 2 4 a

0 1 1 c
0 0 1 b−2a+5c

−3


From here we can use back subtitution and solce for x1, x2, and x3 which means that

ab
c

 ∈ Span{u1,u2,u3}

for every vector

ab
c

 ∈ R3. This precisely means that Span{u1,u2,u3} = R3.

Example 2.2.4. Let u1 =

1
1
1

 ,u2 =

 2
4
−3

 and v =

2
2
5

. Is v ∈ Span{u1,u2}?

We try to solve the vector equation x1u1 + x2u2 = v by looking at the augmented matrix
[
u1 u2 v

]
.1 2 2

1 4 2
1 −3 5

 ∼
1 2 2

0 2 0
0 −5 3

 ∼
1 2 2

0 1 0
0 −5 3

 ∼
1 2 2

0 1 0
0 0 3


The third line of the last equivalent matrix translates to the equation 0 = 3 hence the linear system is
inconsistent! This means there are no scalars x1, x2 ∈ R such that x1u1 +x2u2 = v, hence v /∈ Span{u1,u2}.

To recap, we have seen three vectors that spanned R3 and two vectors that did not span R3. It turns
out that no two vectors in R3 will ever be able to span R3, we will actually need at least 3. Will any three

vectors span R3 or do we need to choose them more carefully? The next example tells us that we must
choose them more carefully.
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Example 2.2.5. Let u1 =

1
1
1

 ,u2 =

 2
4
−3

 and u3 =

 9
13
−1

. Is v =

 4
−2
3

 ∈ Span{u1,u2}?

Performing row operations reveals that1 2 9 4
1 4 13 −2
1 −3 −1 3

 ∼
1 2 9 4

0 1 2 −3
0 0 0 −16


This means that v =

 4
−2
3

 /∈ Span{u1,u2} hence any random set of three vectors will not always span R3.

We can drill down the needed specifications a bit more in the following proposition.

Proposition 2.2.6. Suppose u1, . . . ,um ∈ Rn.

• If m < n, then {u1, . . . ,um} does not span Rn.

• If m ≥ n, then {u1, . . . ,um} may or may not span Rn (we have seen that both cases are possible
when m = n.

This proposition prompts further investigation on how two spans are related. We will begin this inves-
tigation by proving another proposition, and before we do, we lay out some foundational ideas surrounding
proofs.

2.2.1 Some modern math techniques

We begin by recalling the definition of a span of a set of vectors. Given vectors u1,u2, . . . ,un the span of
these vectors, written as span(u1,u2, . . . ,un) is the set of all linear combinations of the vectors u1,u2, . . . ,un.

Tying this into what we mentioned above, we can see that the span of a set of vectors is a set! What
does it mean for something to be an element of this set? For this (and all other sets we encounter), being an
element of a given set means the element in question satisfies the definiton of what it means to be in that
set. Stated in the context of span, a vector v is in the span of u1,u2, . . . ,un, written as

v ∈ span(u1,u2, . . . ,un)

if v is a linear combination of the ui for i = 1, 2, . . . , n. Digging a little further, we can apply the definition
and write

If v ∈ span(u1,u2, . . . ,un), then there exist c1, . . . , cn such that

c1u1 + c2u2 + · · ·+ cnun = v

In proving things about spans, we will constantly come back to this definition, and in general. you should
remember that being an element of a set generally involves looking at the definition of what it means to be
in that set. This is a very common starting point for many proofs. It should help you get your mind moving
and prevent you from getting too stuck.

Some remarks on proofs

Although I don’t plan to discuss proofs very much in this course, there are several basic techniques that
you will be required to know. They are:
1) Knowing how to show that two sets are equal (in particular we will apply this to spans)

17



2) The implications of what an “if and only if” statement means.

1) By definition, two sets, A and B, are equal if any element of A is also an element of B, and simi-
larly, every element of B is an element of A. If only one of these conditions holds, say every element of
A is an element of B, but not every element of B is an element of A, then we say A is a subset of B and
write A ⊂ B. Since a span of a set of vectors is a set, we will be interested in showing that two spans are equal.

The key idea is to take an arbitrary element of one set, and show it belongs to the other, then repeat the
process in the other direction. Using the notation above we can write out this process in a series of steps.

i) Pick an arbitrary element a ∈ A, and show that a ∈ B. This means that A ⊂ B.
ii) Pick an arbitrary element b ∈ B and show that b ∈ A. This shows that B ⊂ A.

To summarize, we have that A = B if and only if A ⊂ B and B ⊂ A. Now we explain a short bit about
if and only if statements, then illustrate the above proof method with an example.

2) For if and only if statements there is not much to know. The one take away is that you have 4 useful
statements that come out of it. If P and Q are two facts, say P is the fact that all cats are black and Q is
the fact that all dogs are brown, then P if and only if Q (also written as P ⇔ Q, or P iff Q) means that all
cats are black if and only if all dogs are brown. The 4 statements that we can get out of this come from
breaking down the statement into parts.

If we have that P if and only if Q, then this means that
i) If P is true then Q is true (also written as P =⇒ Q).
ii) If Q is true then P is true (also written as Q =⇒ P).
iii) If P is false, then Q is false.
iv) If Q is false, then P is false.

Note that the last two statements are the negation of the first two (if this confuses you then just ignore it).

One last thing worth mentioning is what it means if we have a series of statements A,B,C and there is a
theorem saying
The following are equivalent:
i) A
ii) B
iii) C

What does this mean? Well the statement “the following are equivalent” means that the statements that
follow can all be stated with if and only iff statements between them. The above example then reads as A if
and only if B if and only if C. We can pick apart these however we please, i.e. since A if and only if B, then
in particular, B implies A.

Taking an if and only if statement in the context of linear algebra, we can see how the four statements
can give us different results. Recall the following theorem:

Proposition 2.2.7. Let a1,a2, . . . ,an be vectors in Rn (we could also write a1,a2, . . . ,an ∈ Rn). Then the
following statements are equivalent:
i) b is in span{a1,a2, . . . ,an}
ii)The vector equation x1a1 + x2a2 + · · ·+ xnan has at least one solution.

Unpacking all of this we have that:

b ∈ span{a1,a2, . . . ,an} ⇔ x1a1 + x2a2 + · · ·+ xnan has at least one solution
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From this we get the four statements
i) If b ∈ span{a1,a2, . . . ,an} then x1a1 + x2a2 + · · ·+ xnan has at least one solution.

ii)If x1a1 + x2a2 + · · ·+ xnan has at least one solution, then b ∈ span{a1,a2, . . . ,an}.

iii)If b /∈ span{a1,a2, . . . ,an} (i.e. if the vector b is NOT in the span, then x1a1 + x2a2 + · · · +
xnan has NO solutions.

iv) If x1a1 + x2a2 + · · ·+ xnan has at NO solutions, then b /∈ span{a1,a2, . . . ,an}.

Now that we’re a bit more familiar with if and only if statements, let’s finish off with a concrete example
of a proof that the spans of two different sets of vectors are equal. Remember that spans of vectors are still
sets! This means that showing equality of spanning sets is done in the same way that we show equality of sets.

Example:

Prove that

span

{ 1
−2
3

 ,
 0

1
−1

} = span

{ 1
−2
3

 ,
 0

1
−1

 ,
1

0
1

}
To avoid writing the above vectors as much we let

v1 =

 1
−2
3

 v2 =

 0
1
−1

 v3 =

1
0
1


We begin by showing that

span{v1,v2} ⊂ span{v1,v2,v3}

Let x ∈ span{v1,v2}. This means that there exist scalars a1, a2 such that

x = a1v1 + a2v2 = a1

 1
−2
3

+ a2

 0
1
−1


This is the “unraveling the definition part”.

Now it will be super useful to remember that when we say linear combination, we can include 0 as a
scalar! This will prove to be a handy trick and in this context means that

x = a1

 1
−2
3

+ a2

 0
1
−1

+ 0

1
0
1

 = a1v1 + a2v2 + 0v3

So we just wrote x as a linear combination of v1,v2,v3! Thus, x ∈ span{v1,v2,v3} hence we have shown
that span{v1,v2} ⊂ span{v1,v2,v3}.

Now what remains to show is the other direction, namely that span{v1,v2,v3} ⊂ span{v1,v2} and we
apply the same procedure. Letting x ∈ span{v1,v2,v3} this means that there exist scalars b1, b2, b3 such
that

x = b1v1 + b2v2 + b3v3 = b1

 1
−2
3

+ b2

 0
1
−1

+ b3

1
0
1


Now, we need to show that x ∈ span{v1,v2} so how can we do this? Well, showing that v3 is a linear com-
bination of the other two will allow us to write x as a linear combo ONLY in v1 and v2. So lets try and do
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that. (You may see this method and think, “how in the world was I supposed to think of that?!”, but while
seeing it now may seem foreign, you will be doing this trick several times and it will seem less crazy each time).

We want to write v3 as a linear combo of v1 and v2, so lets take a look at what that linear combination
would look like. It would give us some scalars a1, a2 such that1

0
1

 = a1

 1
−2
3

+ a2

 0
1
−1


so all we need to do is FIND the scalars. We do this by looking at the components of each vector and

deducing what the scalars MUST be in order for the above equation to hold. Let’s zoom in on the first
components. For the above equality to hold, this must give us the equation

1 = a1 · 1 + a2 · 0 = a1

hence we need to hace a1 = 1. Now lets look at the second components, assuming we’ve found a1 this
reduces to the equation

0 = 1 · −2 + a2

hence a2 = 2. We can look at the third component and verify that indeed a1 = 1, a2 = 2 give us1
0
1

 =

 1
−2
3

+ 2

 0
1
−1


So we have the desired linear combo. Plugging this into the original linear combination that we started

with, we see that

x = b1v1 + b2v2 + b3v3 = b1

 1
−2
3

+ b2

 0
1
−1

+ b3

1
0
1


= b1

 1
−2
3

+ b2

 0
1
−1

+ b3

( 1
−2
3

+ 2

 0
1
−1

) = (b1 + b3)

 1
−2
3

+ (b2 + 2)

 0
1
−1


which we can now see is a linear combination of v1,v2! Thus x ∈ span{v1,v2} which now implies that

span

{ 1
−2
3

 ,
 0

1
−1

} = span

{ 1
−2
3

 ,
 0

1
−1

 ,
1

0
1

}
We now return to the main investigation concerning how two spanning sets can be related.

Proposition 2.2.8. If u ∈ Span{u1, . . . ,um} then Span{u1, . . . ,um,u} = Span{u1, . . . ,um}.

Proof. Recall what was mentioned about if-then statements and showing two sets are equal. Our goal will
be to show that the two sets Span{u1, . . . ,um,u} and Span{u1, . . . ,um} are equal. Our hypothesis is that
u ∈ Span{u1, . . . ,um} and we must use this somewhere along the way.

Let’s first assume that u ∈ Span{u1, . . . ,um}. This means that there exist scalars x1, x2, . . . , xm ∈ R
such that

u = x1u1 + · · ·+ xmum

Since we want to ultimately show that Span{u1, . . . ,um,u} = Span{u1, . . . ,um} we pick an arbitrary v ∈
Span{u1, . . . ,um,u} and show that it is also in Span{u1, . . . ,um}. This will show that Span{u1, . . . ,um,u} ⊆
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Span{u1, . . . ,um}. For this v that we have chosen, there must exist some other scalars y0, y1, . . . , ym ∈ R
such that

v = y0u + y1u1 + · · ·+ ymum

Now, we use our asssumption that u ∈ Span{u1, . . . ,um} and substitute u = x1u1 + · · · + xmum into the
equation for v. This tells us that

v = y0u+y1u1+· · ·+ymum = y0(x1u1+· · ·+xmum)+y1u1+· · ·+ymum = (y0x1+y1)u1+· · ·+(y0xm+ym)um

which is an element of Span{u1, . . . ,um}! This means that v ∈ Span{u1, . . . ,um} and

Span{u1, . . . ,um,u} ⊆ Span{u1, . . . ,um}

This shows the first part. It remains to show that Span{u1, . . . ,um} ⊆ Span{u1, . . . ,um,u} so we pick a
vector w ∈ Span{u1, . . . ,um} and conclude that it is also in Span{u1, . . . ,um,u}. The assumption on our
vector w implies that there exist scalars z1, z2, . . . , zm such that

w = z1u1 + · · ·+ zmum

Now, observe that 0 is a scalar that we can always use when constructing linear combinations, hence we can
write w as a linear combination of u1, . . . ,um,u by writing

w = 0u + z1u1 + · · ·+ zmum

hence w ∈ Span{u1, . . . ,um,u} and we can conclude that

Span{u1, . . . ,um} ⊆ Span{u1, . . . ,um,u}

This now means that
Span{u1, . . . ,um,u} = Span{u1, . . . ,um}

which completes the proof.

Before ending this section, we exhibit one more bit of compact (and very useful!) notation, namely that
of representing a linear system via matrix notation.

Let A be a matrix with columns a1 =

3
0
1

 ,a2 =

2
1
0

, and a3 =

−4
1
−5

. We can write the matrix A as

A =
[
a1 a2 a3

]
=

3 2 −4
0 1 1
1 0 −5



Let x =

x1

x2

x3

, then we can define the following product.

Definition 2.2.9. The product Ax is given by

Ax =

3 2 −4
0 1 1
1 0 −5

x1

x2

x3

 = x1

3
0
1

+ x2

2
1
0

+ x3

−4
1
−5

 = x1a1 + x2a2 + x3a3

This allows us to succinctly write out linear systems in terms of matrices as follows.
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Example 2.2.10. The linear system


3x1 + 2x2 − 4x3 = 1

x2 + x3 = 0

x1 − 5x3 = 2

has augmented matrix 3 2 −4 1
0 1 1 0
1 0 −5 2


Using the product definition above we can see that for a vector b =

1
0
2

 the above system can be written

as Ax = b for x =

x1

x2

x3

.

We now end the section with (what we will soon see is) a very useful theorem. We note that any time
one says “the following are equivalent”, it means that “if and only if” statements should be placed between
every item in the list. That is to say, if one sentence in the list if true, all others are true, and likewise, if
one sentence is false then all others are false.

Theorem 2.2.11. Let u1, . . . ,um, b ∈ Rn.The following statements are equivalent:

1. b ∈ Span{u1, . . . ,um}.

2. The vector equation x1u1 + · · ·+ xmum = b has at least one solution.

3. The linear system with augmented matrix
[
u1 u2 · · · um b

]
is consistent.

4. The equation Ax = b with A =
[
u1 u1 · · · um

]
has at least one solution for every choice of

b ∈ Span{u1, . . . ,um}.

2.3 Linear Independence

The topic of linear independence will be precisely what we need to understand when a set of vectors spans
some euclidean space. In order to wrap our heads around it, we need one new definition.

Definition 2.3.1. A linear system if homogeneous if it has the form

x1a1 + x2 + a2 + · · ·+ xnan = 0

In other words, every linear equation is set equal to zero (the 0 denotes the zero vector, all of whose entries
are 0).

The beauty of a homogeneous linear system is that it is always consistent since we can always find the
solution x1 = x2 = · · · = xn = 0. We call this solution the trivial solution, any other solutions are referred
to as non-trivial solutions. It is this notion that allows us to define linear independence.

Definition 2.3.2. Suppose u1,u2, . . . ,um ∈ Rn. If the textbfonly solution to the linear system

x1u1 + x2u2 + · · ·+ xmum = 0

is the trivial solution, then we say {u1,u2, . . . ,um} is a linearly independent set of vectors, or that the
vectors are linearly independent. If the vector equation above has non-trivial solutions then {u1,u2, . . . ,um}
is a linearly dependent set of vectors. Recalling that a linear system either has 0, 1, or infinitely many
solutions, we can say that a set of vectors is linearly dependent if the associated homogeneous linear system
involving those vectors has at least one free variable. If this confuses you then feel free to ignore it.
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Example 2.3.3. Let u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

1
3
3

 ∈ R3. Is {u1,u2,u3} a linearly independent set

of vectors?

Considering the homogeneous linear system

x1u1 + x2u2 + x3u3 = 0

we can row reduce the corresponding augmented matrix 1 0 1 0
−1 2 3 0
1 −2 3 0

 ∼
1 0 1 0

0 1 2 0
0 0 6 0


Using back substitution we see that

x3 = 0 =⇒ x2 = 0 =⇒ x1 = 0

hence the only solution is the trivial one. This means that 1
−1
1

 ,
 0

2
−1

 ,
1

3
3


are linearly independent.

Example 2.3.4. Let u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

 4
2
−2

 ∈ R3. Are u1,u2,u3 linearly independent?

Considering the augmented matrix for the homogeneous linear system associated to the three vectors
above we have  1 0 4 0

−1 2 2 0
1 −2 −2 0

 ∼
1 0 4 0

0 1 3 0
0 0 0 0


This equivalent linear system has x3 as a free variable, and from this we obtain the non-trivial solution

x3 = t, x2 = −t, x2 = −4t

where t ∈ R. The existence of a non-trivial solution implies that

 1
−1
1

 ,
 0

2
−2

, and

 4
2
−2

 are linearly

dependent.

Now that we have a little bit of a feel for linear independence, let’s dig into some important propositions
that we may want to use in the future.

Proposition 2.3.5. If u1, . . . ,um ∈ Rn then {0,u1, . . . ,um} is always linearly dependent.

Proof. Given u1, . . . ,um ∈ Rn the equation x00 +x1u1 + · · ·+xmum = 0 always has the nontrivial solution
x0 = 1, x1 = 0, . . . , xm = 0.

We can actually say much more about when certain vectors are linearly dependent.

Proposition 2.3.6. If u1, . . . ,um ∈ Rn and m > n then {u1, . . . ,um} is linearly dependent.
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Proof. We begin by observing that the vector equation

x1u1 + · · ·+ xmum = 0

always has at least one solution (the trivial one). This means the if we set up the usual augmented matrix
and row reduce to a matrix B in echelon form, i.e.[

u1 u2 · · · um 0
]
∼ B

then the matrix B does not have any rows of the form
[
0 0 · · · 0 c

]
, where c 6= 0. Now, observing that

the number of components of each vector is n (this is what it means to say that ui ∈ Rn and that m > n,
we can conclude that there are more vectors than there are components of each vector. This means that
the corresponding augmented matrix has more columns than rows, hence there must be at least one free
variable, hence infinitely many (non-trivial) solutions, which completes the proof.

This Proposition will be a very important one moving forward so we will want to keep it in our toolbox.
Next, we get after a bigger question. How are the ideas of span and linear independence related? The answer
as we will soon see, is quite nice, especially when phrased in terms of pivots. Recall that a pivot position in
a matrix is a coefficient that sits in front of what would be a leading variable, in the corresponding linear
system. We now give three relationships between these two ideas, and prove the third statement in detail.

Proposition 2.3.7. Let u1, . . . ,um ∈ Rn and suppose A =
[
u1 · · · um

]
∼ B where B is a matrix in

echelon form.

1. Span{u1, . . . ,um} = Rn exactly when B has a pivot in every row.

2. {u1, . . . ,um} is linearly independent exactly when B has a pivot in every column.

This proposition is a personal favorite of many. It essentially gives an algorithm for determining when a
given set of vectors span Rn and/or are linearly indepdnent. The question of spanning is a question about
pivots of rows and the question of independence is a question about pivots of columns. All one needs to do
before checking rows and/or columns, is put the given vectors as the columns of a matrix and row reduce to
echelon form.

The last relationship is the following theorem.

Theorem 2.3.8. Let {u1, . . . ,um} be a set of vector in Rn. This set is linearly dependent if and only if one
of the vectors in the set is in the span of the others.

Proof. As with any “if and only if” proof, we must show both directions of the statement, We begin by
assuming that the given vectors are linearly dependent, then deduce that one of the vectors is in the span of
the others. This is the forward direction of the proof and is indicated with “→”. After proving this direction,
we tackle the reverse direction, denoted by “←”, where we assume that one of the vectors is in the span of
the others, and conclude linear dependence.

→
Suppose {u1, . . . ,um} is linearly dependent. Then the vector equation x1u1 + · · · + xmum = 0 has a non-
trivial solution, which we call (x1, . . . , xm). Note that this solution being non-trivial means that at least
one of the xi is non-zero (so we can divide by it!). Without loss of generality, lets assume that x1 6= 0.
Using the vector equation above, we can then solve for u1

x1u1 + · · ·+ xmum = 0 =⇒ x1u1 = −(x2u2 + · · ·+ xmum) =⇒ u1 =
−(x2u2 + · · ·+ xmum)

x1

hence u1 ∈ Span{u2, . . . ,um}.
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←

Now assume that one of the vectors (say u1) is a linear combination of the others. Then there exist
scalars c2, . . . , cm such that

u1 = c2u2 + · · ·+ cmum hence u1 − c2u2 − · · · − cmum = 0

so we have a non-trivial solution to the equation x1u1 + · · ·+xmum = 0, which is exactly what it means for
the vectors u1, . . . ,um to be linearly dependent.

Example 2.3.9. One can show that the set {
[

1
−1

]
,

[
10
9

]
,

[
−4
17

]
} is linearly dependent (this is a good

exercise), hence the above theorem implies that one of them is a linear combination of the others. In fact,
we have [

−4
17

]
=
−206

19

[
1
−1

]
+

13

19

[
10
9

]
Warning: This does not mean that every vector is a linear combination of the others. An easy example of

this is {
[
1
0

]
,

[
2
0

]
,

[
0
1

]
}. Can you see which vectors are not in the span of the others?

We end the chapter with what is arguably the most important theorem of linear algebra which we refer
to it as the big theorem. It is given as a list of equivalent statements and we will add to the list throughout
the course. The key thing to note about the big theorem is that its statements are only true if we have n
vectors in Rn. In most of the statements of propositions we have m vectors in Rn and we do not assume that
m and n are the same. This is something you should always be aware of if you try to use the big theorem
to solve a problem.

Theorem 2.3.10. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
. The following

statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

We end the chapter with an example question that would be impossible to solve without the big theorem.

Example 2.3.11. Let A =
[
u1 u2 u3

]
for u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

1
3
3

, and show that Ax = b

has a solution for every b ∈ R3.

By the big theorem, Ax = b has a solution for every b ∈ R3 if and only if the three vectors are linearly
independent. This was shown in Example 2.3.3, hence the question is true by the big theorem.
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Chapter 3

Linear Transformations

Up to this point, we have done a tremendous amount of algebra with vectors and matrices, but we have not
examined the geometry underlying linear systems. As we will soon see, the notion of a linear transformation
allows us to translate our algebraic notions into geometric ones. Often times in practice, we aim to answer
hard geometric questions and the methods we use involve translating the geometry into an algebraic question
involving matrices, then using the matrices to answer the question, and translating the answer back to the
underlying geometric picture.

3.1 The Basics of Linear Maps

We begin by outlining the basic vocabulary of linear transformations, otherwise known as linear maps. A
priori, a linear map is just a function that takes vectors as input and outputs vectors (of possibly different
size than the input). The notation

T : Rm → Rn

reads as “T is a function from Rm to Rn”.

• The set Rm is the domain of T (and T must be defined for every element of Rm).

• The set Rn is the codomain of T . It is the set where all the output vectors live.

• The subset of Rn consisting of all output vectors, that is, all vectors of the form w = T (x) for some
x ∈ Rm is known as the Range of T , denoted Range(T ). It is also often called the image of T .

The following picture can serve as a visual summary of these definitions
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Before defining what a linear map is, let’s look at an example of a vector valued function.

Example 3.1.1. Let T : R3 → R2 be defined by

T
(x1

x2

x3

) =

[
x1x2

x2 − x3

]

The domain of this map is R3 and the codomain is R2. The vector

[
2
1

]
is in Range(T ) because T

(1
2
3

) =

[
2
1

]
Definition 3.1.2. A function T : Rm → Rn is a linear transformation or linear map if, for every
u,v ∈ Rm and every scalar r ∈ R, we have:

• T (u + v) = T (u) + T (v).

• T (ru) = rT (u)

Some people like to combine the two conditions of linearity by saying that T is a linear transformation if

T (ru + sv) = rT (u) + sT (v)

for all vectors u,v ∈ Rm and all scalars r, s ∈ R.

Example 3.1.3. Let’s show that the map T : R2 → R3 defined by

T
([x1

x2

])
=

 −x2

x1 + x2

4x1


is a linear map.

Let u =

[
u1

u2

]
and v =

[
v1

v2

]
be arbitrary vectors in the domain (R2). Then u + v =

[
u1 + v1

u2 + v2

]
hence

T (u + v) =

 −(u1 + v1)
(u1 + v1) + (u2 + v2)

4(u1 + v1)

 =

 −u2

u1 + u2

4u1

+

 −v2

v1 + v2

4v1

 = T (u) + T (v)

Moreover, if r ∈ R then ru =

[
ru1

ru2

]
and

T (ru) =

 −ru2

ru1 + ru2

4ru1

 = r

 −u2

u1 + u2

4u1

 = rT (u)

hence T is indeed a linear transformation.

Example 3.1.4. Let T : R3 → R2 be the map defined earlier by

T
(x1

x2

x3

) =

[
x1x2

x2 − x3

]
This is not a linear map since, for example, if r = 2 then

T (2x) =

[
4x1x2

2(x2 − x3)

]
6= 2T (x) =

[
2x1x2

2(x2 − x3)

]
One way to see why this is not a linear map is that the first coordinate of an arbitrary output vector is a
quadratic function in the input variables. In general, linear maps have coordinate functions that are linear.
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One of the most amazing things about linear maps is that they are intimately tied to matrices.

Definition 3.1.5. A matrix with n rows and m columns has dimensions n ×m and is referred to as an
n×m matrix. An n× n matrix is often called a square matrix.

Now, by recalling Definition 2.2.9 (the product Ax) we can see the connection with matrices and linear
maps. If A is an n×m matrix and x ∈ Rm then the product Ax is always a vector in Rm (you should verify
this for yourself). In other words, an n ×m matrix, when multiplied by a vector in x ∈ Rm, takes x to a
vector Ax, in Rn.

Theorem 3.1.6. Let A be an n×m matrix and define T : Rm × Rn via

T (x) = Ax

then T is a linear transformation.

The above theorem is powerful and can be used to easily show that a given map is linear, without verifying
the two properties of the original definition. That is, to show that a function T : Rm → Rn is a linear map,
it suffices to find a matrix A such that T (x) = Ax.

Example 3.1.7. Consider the linear map from Example 3.1.3, which we now know is indeed linear. Using
Definition 2.2.9 we have

T (x) =

 0x1 − x2

x1 + x2

4x1 + 0x2

 = x1

0
1
4

+ x2

−1
1
0

 =

0 −1
1 1
4 0

[x1

x2

]

so T (x) = Ax for A =

0 −1
1 1
4 0

 and by the above theorem, T is a linear map.

Continuing with this example, let w =

10
5
2

. Is w ∈ Range(T )? That is, does there exist a vector

x ∈ R2 such that T (x) = w. Since T (x) = Ax, the existence of such a vector x would imply that Ax = w
so to find the vector x we need to solve the system Ax = w which has augmented matrix0 −1 10

1 1 5
4 0 2

 ∼
1 1 5

0 1 −10
0 0 −58


hence w 6∈ Range(T ) because there does not exist a vector x with T (x) = w. This is an example of a linear
map that is not onto, which leads us to our next set of definitions.

Definition 3.1.8. Let T : Rm → Rn be a linear transformation.

1. T is one-to-one if for each w ∈ Rn, there is at most one vector x ∈ Rm such that T (x) = w. In
other words, every domain vector x goes to exactly one vector in the codomain. It is not possible for
one-to-one maps to send two different vectors to the same one. This would be “two-to-one”.

2. T is onto if for every w ∈ Rn, there is at least one vector x ∈ Rm such that T (x) = w. In other words,
T is onto if every vector in the codomain is mapped to by some vector in the domain.

Less formally, T is one-to-one if nothing in the codomain gets “hit” more than once, and T is onto if
everything in the codomain gets “hit”.
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All possibilities involving these definitions are most easily understood through these helpful pictures.
Now let’s get familiar with these concepts through examples.

Example 3.1.9. Let A =

[
1 −2
−2 4

]
with T : R2 → R2 defined by T (x) = Ax. We have

T
([

1
−2

])
=

[
1 −2
−2 4

] [
1
−2

]
=

[
5
−10

]
and T

([−3
−4

])
=

[
1 −2
−2 4

] [
−3
−4

]
=

[
5
−10

]
which means that T is not one-to-one. Moreover, (exercise) T is not onto since there is no x ∈ R2 with

T (x) =

[
1
3

]
.

Example 3.1.10. Let A =

2 0
1 −1
0 0

 with T : R2 → R3 given by T (x) = Ax. Is T onto?

If it were, then for any vector w =

ab
c

 ∈ R3 we could always find a vector x ∈ R2 such that T (x) =

Ax = w. Solving the associated linear system in the usual way we get that2 0 a
1 −1 b
0 0 c

 ∼
1 −1 b

0 2 a− 2b
0 0 c


which corresponds to a linear system whose third equation is 0 = c. Now, if w was a vector with non-zero
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third coordinate, then w /∈ Range(T ) by what we have stated above. For example,

0
0
1

 /∈ Range(T ) whereas1
1
0

 ∈ Range(T ).

Example 3.1.11. Let A =

[
2 0
0 4

]
with T : R2 → R2 given by T (x) = Ax. In coordinates, we have

T
([x1

x2

])
=

[
2x1

4x2

]
. If w =

[
a
b

]
then T (x) = w has exactly one solution, namely x =

[
a/2
b/4

]
. There are no

other vectors that get mapped to w =

[
a
b

]
. This means that every vector gets “hit” and there is exactly

one x such that T (x) = w for any w, hence T is both one-to-one and onto.

There is an alternative definition of one-to-one that some may find useful.

Definition 3.1.12. T is one-to-one if

T (u) = T (v) implies u = v

Continuing along with the notion of a one-to-one map, we have one essential property of a linear map,
that closely ties into being one-to-one.

If T : Rm → Rn is a linear transformation, then T (0) = 0.

Theorem 3.1.13. Let T : Rm → Rn be a linear map. T is one-to-one if and only if the equation T (x) = 0
has only the trivial solution x = 0. That is, if T (x) = 0, we must have x = 0.

Proof. If T (x) = 0 has only the trivial solution, then by the alternative definition of one-to-one, we can
conclude that if T (u) = T (v) then T (u) − T (v) = 0. Moreover, since T is linear, we have T (u) − T (v) =
T (u− v) hence T (u− v) = 0. THe trivial solution here implies that u = v = 0, thus we must have u = v,
implying that T is indeed one-to-one.

In practice, when checking if a linear map is one-to-one, this theorem is the easiest method to use.
In general, the following theorem outlines some other useful methods of checking when linear maps are
one-to-one or onto.

Proposition 3.1.14. Let A be an n×m matrix and define T : Rm → Rn via T (x) = Ax. Then

1. T is one-to-one if and only if the columns of A are linearly independent.

2. If m > n, then T is never one-to-one.

3. T is onto if and only if the columns of A span Rn (the codomain).

4. If m < n, then T is never onto.

In practice, you should always try to use statements 2 and 4 from the proposition, they are super useful!

Next, let’s illustrate the last proposition with an example.

Example 3.1.15. Let A =

2 0
0 1
3 −3

 with T : R2 → R3 given by T (x) = Ax. Since m < n we know

immediately that T is not onto, but it could be one-to-one. To find out if it is, we look at the equation
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T (x) = Ax = 0. This is a linear system which reduces via2 0 0
0 1 0
3 −3 0

 ∼
1 0 0

0 1 0
0 0 0


hence only the trivial solution exists and we must have x = 0 =

[
0
0

]
. We can then conclude, by the theorem

we just proved, that T is one-to-one.

Now we have seen quite a few linear maps in action. Every one that we have seen was given by some
matrix so it is natural to ask if all linear maps are given by matrices. The emphatic answer is yes!

Theorem 3.1.16. If T : Rm → Rn is a linear transformation, then there exists an n ×m matrix A such
that T (x) = Ax.

This means that we can always find the matrix associated to a linear map (and we should!). Working
with linear maps is always easier when working with their associated matrices and because of this, we move
interchangeably between linear maps and matrices from here on out. When you think of a matrix you shoudl
always be thinking about what it does as a linear transformation.

The beauty of this thoerem extends further. In fact, given any linear map, we can always find its
assoctaed matrix fairly easily.

Example 3.1.17. Let T : R3 → R5 be given by

T
(x1

x2

x3

) =


x3 − x1

x2 + x3

4x1 + 3x2

x1 − 5x3

9x2


Lets find the matrix for T .

Let

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


We call these the standard basis vectors of the domain. If the domain is Rm then there are m of these
vectors. The general rule is that the formula for A is

A =
[
T (e1) T (e2) T (e3)

]

so by using the coordinate definition of T we have that T (e1) =


−1
0
4
1
0

 , T (e2) =


0
1
3
0
9

 , T (e3) =


1
1
0
−5
0

 hence

A =


−1 0 1
0 1 1
4 3 0
1 0 −5
0 9 0
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This formula is our new best friend is is extremely useful. Let’s summarize how this works in general.

Proposition 3.1.18. Let T : Rm → Rn be a linear transformation. Then T (x) = Ax with A an n × m
matrix given by

A =
[
T (e1) T (e2) · · · T (em)

]
Last but not least, we use results from this section to add to the big theorem.

Theorem 3.1.19. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

An interesting consequence of this, in stark contrast to Proposition 3.1.14, is that a linear map from Rn
to itself is either one-to-one and onto, or neither.

3.2 Matrix Algebra

In continuing with our geometric theme, the tools of matrix algebra provide the algebraic notions that we
will use to answer geometric questions concerning multiple linear transformations.

The first notion we need is matrix addition. This is done component-wise, in a way that is similar to
vectors.

Example 3.2.1. Let A =

[
4 0 −1
2 2 5

]
and B =

[
9 10 6
−1 0 −1

]
. We define A+B to be the 2× 3 matrix

A+B =

[
13 10 5
1 2 4

]
Note that we obtained this matrix just by adding matching coordinates of each matrix. For a given scalar
r ∈ R we define rA to be

rA =

[
4r 0 −r
2r 2r 5r

]
In general, there are just several things to note about matrix addition.

1. One can only add matrices of the same size. That is, if C is a 2 × 3 matrix and D is a 3 × 4 matrix
then C +D is undefined.

2. We denote the zero matrix with n rows and m columns by 0nm, or simply write 0 when the context is
clear. The zero matrix satisfies the property that 0 + A = A for any matrix A where the addition is
defined.

3. Matrix addition is commutative, that is, A+B = B +A.

We now move onto the slightly more complicated (but also more important) notion of matrix multipli-
cation. This can be thought of as a generalization of multiplying a matrix by a vector.
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Definition 3.2.2. If A is an n × k matrix and B is a k × m matrix, written column-wise as B =[
b1 b2 · · · bm

]
then the product AB is the n×m matrix given by

AB =
[
Ab1 Ab2 · · · Abm

]
where each column Abi is computed using Definition 2.2.9.

Example 3.2.3. Let A =

[
4 0 −1
2 2 5

]
and B =

−2 1 2 0
6 0 −3 −1
7 −1 4 1

. Then

AB =

[
4 0 −1
2 2 5

]−2 1 2 0
6 0 −3 −1
7 −1 4 1



= A

−2
6
7

+A

 1
0
−1

+A

 2
−3
4

+A

 0
1
−1

 =

[
−15 5 4 −1
43 −3 18 3

]
This can be taken to be the original definition of matrix multiplication, but in practice, there is a much

easier way of computing it.

Given an n × k matrix A and a k ×m matrix B, the product AB is the n ×m matrix, whose ij-entry
(the entry in row i column j) is the dot product of the ith row of A with the jth column of B. It would
be a great exercise to run back through the example above using this method. In doing so, you should also
see why the product is not defined when the number of columns of A does not equal the number of rows of B.

Warning: In general, the order in which one multiplies matrices matters. With the example above, even
though AB is defined, BA is not. Always exercise care with the order in which you multiply matrices.

It is now a good time to introduce some special types of matrices that we will encounter more frequently
as well as some useful ideas that come from our new perspective of matrices. We begin with two definitions,
then lay out some special classes of matrices.

Definition 3.2.4. The transpose of an m × n matrix A, denoted A>, is the m × n matrix obtained by

interchanging the rows and columns of A. For example, if A =

[
3 0 1
4 1 −2

]
then A> =

3 4
0 1
1 −1

. The main

properties of transposing matrices is that the transpose of a product is the product of transposes (with order
swapped), that is

(AB)> = B>A>

Definition 3.2.5. Given a square matrix A, we define the kth power of A to be the matrix Ak. That is,
the matrix obtained by multiplying A by itself k times. For example, A2 = AA and A3 = A(A2) = AAA.

• The n× n identity Matrix, In: Considering (again) the standard basis vectors for Rn,

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

, the n× n identity matrix is given by

In =
[
e1 e2 · · · en

]
In is the unique matrix for which AIn = InA = A for any n× n matrix A.
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To see some small examples, we have

I2 =

[
1 0
0 1

]
and I3 =

1 0 0
0 1 0
0 0 1


• Diagonal Matrices: If the only non-zero entries of a square matrix A lie on thh main diagonal, then

we call A a diagonal matrix. For example,

A =


2 0 0 0
0 4 0 0
0 0 0 0
0 0 0 6


and we can check that

A2 =


4 0 0 0
0 16 0 0
0 0 0 0
0 0 0 36

 and A3 =


8 0 0 0
0 64 0 0
0 0 0 0
0 0 0 216


In general, if

A =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

 then Ak =


ak11 0 . . . 0
0 ak22 . . . 0
...

...
. . .

...
0 0 . . . aknn


• Triangular Matrix: If A is a square matrix with zeroes in each entry below the main diagonal, then
A is an upper triangular matrix. We can similarly define a lower triangular matrix to have zeroes
below the main diagonal. If A is either upper or lower triangular, then we say that A is a triangular
matrix. For example, given the two matrices

A =

1 2 2
0 4 5
0 0 6

 B =

1 0 0
0 5 0
4 4 4


we have that A is upper triangular and B is lower triangular.

Expanding on what we said for diagonal matrices, we have the (great) fact.

Proposition 3.2.6. If A is a triangular matrix, then Ak is triangular.

Note that what was said about powers of diagonal matrices follows from this Proposition because all
diagonal matrices are triangular.

We now outline some things that we need to be very careful about, when it comes to matrices and
products of them. These are things that you will want to always keep in mind when computing matrix
products.

1. In general, if AB is defined, the product BA is not defined. This is always the case if A or B are not
square matrices and can be seen in the previous example.

2. The commutative property does not hold for matrix multiplication. For example,[
1 2
3 −4

] [
1 2
−3 4

]
=

[
−1 8
15 −10

]
6=
[

1 2
−3 4

] [
1 2
3 −4

]
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3. Unlike with numbers, it is possible to multiply two non-zero matrices together and obtain the zero
matrix. For example, [

1 1
1 1

] [
2 3
−2 −3

]
=

[
0 0
0 0

]
The takeaway from this is that if AB = 0 we cannot conclude that either A = 0 or B = 0.

4. Its possible that AC = BC but A 6= B and C 6= 0. For example,[
2 3
6 −2

] [
1 1
1 1

]
=

[
1 4
2 2

] [
1 1
1 1

]
=

[
5 5
4 4

]
The takeaway from this is that if AC = BC and C 6= 0 then we cannot conclude that A = B.

We now end the section with what is arguably the most important aspect of matrix multiplication.

Proposition 3.2.7. Let T1 : Rm → Rk be given by T1(x) = A1x and let T2 : Rk → Rn be given by T2(x) =
A2x. The matrix associated to the composition T2 ◦T1(x) = T2(T1(x)) is A2A1, that is, matrix multiplication
corresponds to composition of associated linear maps.

Proof. We can quickly verify that

T2 ◦ T1(x) = T2(T1(x)) = T2(A1x) = A2A1x

Example 3.2.8. Let T1, T2 : R2 → R2 be given by T1(x) = A1x and T2(x) = A2x with

A1 =

[
1 2
−3 4

]
and A2 =

[
2 1
3 −2

]

If x =

[
1
−1

]
then we can compute T1(T2(x)). First observe that

T2(x) =

[
2 1
3 −2

] [
1
−1

]
=

[
1
7

]
Now we have

T1(T2(x)) =

[
1 2
−3 4

] [
1
7

]
=

[
15
25

]
We can also verify that

A1A2 =

[
8 −7
6 −19

]
which means that T1(T2(x)) =

[
8 −7
6 −19

] [
1
−1

]
. A direct computation indeed yields the desired result.

As a last note, we emphasize that the order of matrix multiplication is an essential component of com-
puting a composition of linear maps correctly. In practice, always make sure that the order in which you
multiply is correct.
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3.3 Inverses

We now come to the last topic of this chapter, the all important idea of an inverse. We will see that the
notion of an inverse will correspond to the same notion of an inverse function. They will also make solving
certain linear systems much easier.

Definition 3.3.1. If A is an n × n matrix and there exists another n × n matrix, A−1 (pronounced A
inverse), satisfying

A−1A = AA−1 = In

then A is invertible and we say A−1 is the inverse of A.

Example 3.3.2. Let A =

[
1 −1
3 2

]
. We can see that A is invertible and A−1 =

[
2/5 1/5
−3/5 1/5

]
since an easy

computation shows that A−1A = AA−1 = I2.

Going along the lines of the example, we actually have a nice closed formula for the inverse of a 2 × 2

matrix (larger matrices do not have such nice formulas). Given A =

[
a b
c d

]
, if ad − bc 6= 0 then A is

invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
Our main task in this section will be to compute inverses for n × n matrices where n > 2. The process

is as follows:

Suppose we are given the n× n matrix A =
[
a1 a2 · · · an

]
. To find A−1 (if it exists) we

1. Augment A with the n× n identity matrix In =
[
e1 e2 · · · en

]
to get[

a1 a2 · · · an e1 e2 · · · en
]

2. Reduce the left hand side (the matrix A) to reduced echelon form and apply the same row operations
to In.

3. If this algorithm can be completed, the right hand side of the augmented matrix will be A−1. That is[
A In

]
∼
[
In A−1

]
Example 3.3.3. Find A−1 if A =

−1 4 1
1 0 1
2 0 1

. By applying all the necessary row operations we get

−1 4 1 1 0 0
1 0 1 0 1 0
2 0 1 0 0 1

 ∼
1 −4 −1 −1 0 0

0 4 2 1 1 0
0 8 3 2 0 1

 ∼
1 −4 −1 −1 0 0

0 1 1/2 1/4 1/4 0
0 8 3 2 0 1



∼

1 −4 −1 −1 0 0
0 1 1/2 1/4 1/4 0
0 0 1 0 2 −1

 ∼
1 −4 0 −1 2 −1

0 1 0 1/4 −3/4 1/2
0 0 1 0 2 −1

 ∼
1 0 0 0 −1 1

0 1 0 1/4 −3/4 1/2
0 0 1 0 2 −1


hence A−1 =

 0 −1 1
1/4 −3/4 1/2
0 2 −1

.

Definition 3.3.4. An n× n matrix A is non-singular if it has an inverse, otherwise we say it is singular.
It is also important to note that if A−1 exists, it is unique.

36



Inverses also relate nicely to linear transformations.

Definition 3.3.5. If T : Rn → Rn is a linear transformation that is one-to-one and onto then T is invertible.
Its inverse is the function T−1 : Rn → Rn with the property that for each x ∈ Rn we have T−1(T (x)) = x.
In fact, if T is given by T (x) = Ax, then if T is invertible, we always have T−1(x) = A−1x.

Example 3.3.6. Let T : R2 → R2 be given by T
([
x1

x2

])
=

[
4x1 + 3x2

−6x1 + 5x2

]
so that T (x) = Ax with A =[

4 3
−6 5

]
. Using the formula for the inverse of a 2× 2 matrix, we have that

A−1 =
1

38

[
5 −3
6 4

]
We can then verify that

T−1
(
T
([x1

x2

]))
= T−1

([ 4 3
−6 5

] [
x1

x2

])
=
( 1

38

[
5 −3
6 4

] [
4 3
−6 5

] [
x1

x2

])
=

[
x1

x2

]
Now that we have a bit of a handle of inverses of matrices, we can return to the algebraic mishaps of

last section, and see that invertibility was indeed the solution we needed to make sense of when matrix
multiplication behaves like regular multiplication of numbers.

Proposition 3.3.7. Suppose A and B are non-singular n× n matrices and C and D are n×m matrices.
Then

1. A−1 is invertible with inverse (A−1)−1 = A.

2. AB is invertible and (AB)−1 = B−1A−1 This is known as the shoes and socks lemma. If B represents
putting on your socks and A represents putting on your shoes, then undoing this process translates to
first taking off your shoes (A−1), then taking off your socks (B−1).

3. If AC = AD, then C = D. We can obtain this logically by taking the first equation and multiplying on
the left by A−1 on both sides.

4. If AC = Onm then C = 0nm. This can similarly be obtained by multiplying both sides by A−1 on the
left.

It is essential to note here that invertibility of A is precisely what gives us the ability to draw all the
conclusions we have made. Without invertibility of A, we cannot deduce any of the four statements.

We can now add some more results to the big theorem (which some refer to as the invertible matrix
theorem).

Theorem 3.3.8. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.
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We now end the section with one illustration of why we love invertible matrices.

Example 3.3.9. Consider the linear system{
4x1 + 3x2 = 5

−2x1 − x2 = 7

This system is the same as Ax = b for A =

[
4 3
−2 −1

]
and b =

[
5
7

]
. Moreover, A is invertible with

inverse given by A−1 =

[
−1/2 −3/2

1 2

]
. Note that we found this matrix by using the formua for 2 × 2

matrices. Looking at the matrix equation Ax = b, we can see that isolating x is equivalent to multiplying
both sides by A−1 on the left, hence

A−1Ax = A−1b =⇒ x = A−1b

and

A−1b =

[
−1/2 −3/2

1 2

] [
5
7

]
=

[
−13
19

]
= x

which uniquely solves the system.
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Chapter 4

Basis and Subspaces

We now enter the second half of the topics list for this course, the first of which is subspaces. The language
of subspaces gives us precise notions that allow one to describe things like planes and lines in R3 in greater
generality. Once we have the basics of subspaces, we will define the all important notion of a basis, which
will also lead us to the definition of dimension. We then take an in depth look at some of the most important
subspaces related to a matrix, namely the column space and null space. We then finish the chapter with a
description of change of basis, a central theme in all of linear algebra.

4.1 Subspaces

Definition 4.1.1. A subset S of Rn is a subspace of Rn is vectors in S satisfy the three following conditions:

1. 0 ∈ S.

2. If u,v ∈ S, then u + v ∈ S. This is known as closure under addition.

3. If r ∈ R and u ∈ S then ru ∈ S. This is known as closure under scaling.

It is worth noting that the first condition introduces the necessary condition that no two parallel subspaces
can ever exist.

Example 4.1.2. Let u1,u2 ∈ Rn and S = Span{u1,u2}. Is S a subspace of Rn?

We must verify each of the three conditions for S to be a subspace.

1. 0 ∈ S because 0 = 0u1 + 0u2.

2. Elements of S are closed under addition. Let u = c1u1 + c2u2 and v = d1u2 + d2u2. Clearly both of
these are arbitrary elements of S. By adding them together we see that

u + v = (c1 + d1)u1 + (c2 + d2)u2 ∈ S

which shows that the second condition is met.

3. If r ∈ R and u = c1u1 + c2u2 ∈ S, then

ru = rc1u1 + rc2u2 ∈ S

which shows that the third condition is met. We can now conclude that S is a subspace.

In general, the span of any set of vectors in Rn is always a subspace of Rn. This can easily be seen by
reworking the above example with arbitrarily many vectors. This is such a fundamental fact that we state
it as a theorem, which may be freely used from here on out.
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Theorem 4.1.3. If u1, . . . ,um ∈ Rn, then Span{u1, . . . ,um} is a subspace of Rn.

Example 4.1.4. Let S be the set of solutions of the linear system{
5x2 + 5x2 = 10

x2 + x2 = 5

Is S a subspace of R2?

NO! The easiest way to see this is by verifying that the first subspace condition is broken, That is, 0 =

[
0
0

]
/∈ S

because it is not a solution to the non-homogeneous set of equations which define S.

Example 4.1.5. Let S be a subset of vectors in R3 consisting of the vectors

ab
c

 such that ab = 0. It turns

out that S is not a subspace of R3 because S is not closed under addition. For example, the vectors u =

1
0
1


and v =

0
1
1

 are both in S (condition that ab = 0 is satisfied) but

u + v =

1
1
2


and a = b = 1 so ab 6= 0, which means that u,v ∈ S but u + v /∈ S.

We now introduce one of the fundamental subspaces associated to a matrix.

Theorem 4.1.6. Let A be an n ×m matrix. If S is the set of solutions of the homogeneous linear system
Ax = 0, then S is a subspace of Rm.

Proof. First, we can see that A0 = 0 for any matrix A, hence 0 ∈ S. Moreover, if Au = 0 and Av = 0
(meaning u,v ∈ S), then u + v ∈ S because

A(u + v) = Au +Av = 0 + 0 = 0

Finally, we can also see that ru ∈ S for any u ∈ S. By assuming that Au = 0 (since u ∈ S) we have that
for any scalar r ∈ R

A(ru) = rAu = r(0) = 0

This shows that S is a subspace.

Definition 4.1.7. If A is an n×m matrix, then the set of all solutions to the homogeneous linear system
Ax = 0 is called the null space of A. It is denoted Null(A) and is a subspace of Rm. In other words

Null(A) =
{

x ∈ Rm : Ax = 0
}

Example 4.1.8. Find the null space of A =

[
1 −1 0
2 4 3

]
.
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The procedure for finding the null space of a matrix is always the same. We begin by augmenting with
the zero vector and row reducing. [

1 −1 0 0
2 4 3 0

]
∼
[
1 −1 0 0
0 1 1/2 0

]
Looking at the echelon matrix, we can see that x3 is a free variable so we set x3 = t. Using back substitution
from here get the general solution x1

x2

x3

 =

− 1
2 t
− 1

2 t
t

 = t

−1/2
−1/2

1


which means that

Null(A) = Span
{−1/2
−1/2

1

}
In general, one may encounter a situation where they have to determine if a given set is a subspace. Here

are some helpful tips to carry out this task successfully:

1. Check if 0 ∈ S. If not, then S is not a subspace.

2. If you can find specific vectors whose span is preciesly equal to S, then you can leverage Theorem
4.1.3 to argue that S is a subspace.

3. Recognize that S can in fact be expressed as the null space of some matrix and leverage Theorem
4.1.6 to show that S is a subspace (this method is powerful if you can get good at using it). As

an example, consider the set of vectors of the form

ab
c

 such that a − b = −c. The condition that

a− b = −c is equivalent to a− b+ c = 0. This set of vectors is then the solution set of the linear system
x1 − x2 + x3 = 0 which can be expressed as Null(A) where A =

[
1 −1 1

]
. Note that in general, if

you can algebraically manipulate something to obtain a zero somewhere, you are probably looking at
a null space in disguise.

4. If all else fails, show closure under addition and scaling directly. If you encounter a road block in trying
to prove this, it may mean that S is not a subspace. If you suspect this is the case, you should then
seek out a counterexample. Either two vectors in S whose sum is not in S, or a fixed vector and fixed
scalar which break closure under scaling.

We end this section by investigating how this relates to linear maps.

Definition 4.1.9. Let T : Rm → Rn be a linear transformation. The set of all vectors x ∈ Rm such that
T (x) = 0 is called the kernel of T and is denoted ker(T ).

Theorem 4.1.10. If T : Rm → Rn is a linear transformation, then ker(T ) is a subspace of Rm and Range(T )
is a subspace of Rn (recall that Range(T ) = {y ∈ Rn : T (x) = y for some ∈ Rm}.

Proof. The proof of this is very instructive and will be useful for the remainder of the course.

Since T is a linear transformation, we know that there exists a matrix A such that T (x) = Ax. This
means that if T (x) = 0 then Ax = 0 hence ker(T ) and Null(A) are the same! By Theorem 4.1.6 we can
conclude that ker(T ) is a subspace. Similarly by recalling the formula of Definition 2.2.9, we can see that

Range(T ) = Span{a1, . . . ,am}

where A =
[
a1 · · · an

]
(Remember this fact!). It then follows from Theorem 4.1.3 that Range(T ) is a

subspace.
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Tracing back to the results of the previous chapter, we now have a nice new fact.

Proposition 4.1.11. Let T : Rm → Rn be a linear transformation. T is one-to-one if and only if ker(T ) =
{0}.

We now end the section by adding to the big theorem.

Theorem 4.1.12. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

4.2 Basis and Dimension

We saw in the previous section that spans of any number of vectors always forms a subspace. From this
fact, we can ask the question, is every subspace the span of some set of vectors? The answer to this is yes!
Moreover, we can go one step further and ask wether or not we can find the smallest set of vectors that span
a given subspace. It is the notion of a basis that stems from this idea.

Definition 4.2.1. Let S be a subspace of Rn. A basis for S is a set of vectors BS = {u1, . . . ,um} that
spans S and is linearly independent.

Example 4.2.2. Let S = Span
{[1

2

]
,

[
−3
−6

]
,

[
10
20

]}
. We can observe that

[
−3
−6

]
= −3

[
1
2

]
and

[
10
20

]
=

10

[
1
2

]
, hence, we can see that the spanning vectors for S are linearly dependent. Based on the definition for

a basis, this means that the given vectors are not a basis. Moreover, along the lines of Proposition 2.2.8, we
have that

Span
{[

1
2

]
,

[
−3
−6

]
,

[
10
20

]}
= Span

{[
1
2

]
}

Since
{[1

2

]}
spans S and is linearly independent, we have that BS =

{[1
2

]}
forms a basis for S.

Example 4.2.3. Let

u1 =

1
0
0

 ,u2 =

0
1
1

 ,u3 =

1
1
1

 , and u4 =

1
2
2


and let S = Span{u1,u2,u3,u4}. We can observe that u3 = u1 + u2 and u4 = u1 + 2u2 hence S =
Span{u1,u2}. Since {u1,u2} is linearly independent, we can conclude that {u1,u2} is a basis for S.

Example 4.2.4. Consider the zero vector 0 ∈ Rn. The zero subspace S = {0} is the only subspace of Rn
that has no basis. It consists of the origin and nothing else.
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A task that will arise again and again is that of finding a basis for a given subspace. There are two ways
of doing this and we break down each ”recipe”. Both have their advantages depending on the context in
which you want to find a basis. In both cases, assume S = Span{u1, . . . ,un}.

1. Recipe 1:

• Form a matrix A whose ROWS are the vectors u1, . . . ,un.

• Use row reductions to transform A to an echelon matrix B.

• The non-zero rows of B form a basis for S.

Example 4.2.5. Let u1 =


1
−2
3
−2

 ,u2 =


1
1
−1
0

 , and u3 =


3
−3
5
4

 and suppose S = Span{u1,u2,u3}.

Then

A =

1 −2 3 −2
1 1 −1 0
3 −3 5 −4

 ∼
1 −2 3 −2

0 3 −4 2
0 0 0 0

 = B

The non-zero rows of B form a basis for S hence BS =
{
−1
−2
3
−2

 ,


0
3
−4
2

} is a basis for S.

2. Recipe 2:

• Form a matrix A whose COLUMNS are the vectors u1, . . . ,un.

• Use row reductions to transform A to an echelon matrix B.

• The columns of A that correspond to the pivot columns of B form a basis for S.

Example 4.2.6. Let u1 =


1
−2
3
−2

 ,u2 =


1
1
−1
0

 , and u3 =


3
−3
5
4

 and suppose S = Span{u1,u2,u3}.

Then

A =


1 1 3
−2 1 −3
3 −1 5
−2 0 −4

 ∼


1 1 3
0 3 3
0 0 0
0 0 0

 = B

The pivot columns of B are columns 1 and 2 hence our basis for S is

BS =
{

1
−2
3
−2

 ,


1
1
−1
0

}

As a general rule, one should always remember that both recipes always work but recipe 1 tends to give
“simpler” basis vectors (with more zeroes) whereas recipe 2 always gives basis vectors that are a subset of
the vectors you started with. It is very common to want to reduce a spanning set to a basis (known as
reducing to a basis), and this makes recipe 2 especially useful in many scenarios.
We can now use the notion of a basis to define dimension. The first fundamental fact that we need is the
following.
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Proposition 4.2.7. If S is a subspace of Rn, then every basis of S has the same number of vectors in it.

Definition 4.2.8. The dimension of a subspace S, denoted dim(S), is the number of vectors in any basis
for S. Note that in the previous example, we had dim(S) = 2. In general, we always have dim({0}) = 0.

Example 4.2.9. If S is a subspace of R3, what are the possible values of dim(S)?

• S could be the zero subspace, in which case dim(S) = 0.

• S could be a line through the origin in which case it has the form S = Span{u1} for u1 6= 0 and
dim(S) = 1.

• S could be a plane through the origin in which case it has the form S = Span{u1,u2} for u1,u2 linearly
independent. In this case we have dim(S) = 2.

• S could be all of R3, which we could write as

R3 = Span
{1

0
0

 ,
0

1
0

 ,
0

0
1

}
We call {e1, e2, e3} the standard basis of R3. In this case, dim(S) = 3 and in general, this is the
only 3-dimensional subspace of R3.

This completes our list because any subspace S = Span{u1, . . . ,um} where m > 3 can never be m dimen-
sional. This follows from the fact that any set of m > 3 vectors in R3 is never linearly independent, hence
we can never have a basis containing more than 3 vectors.

Let’s illustrate all of these ideas on some more complex examples.

Example 4.2.10. Find a basis for R4 containing the vectors

u1 =


1
0
2
0

 and u2 =


2
2
1
1


We know that BR4 = {e1, e2, e3, e4} is a basis for R4 and since u1,u2 ∈ Span{e1, e2, e3, e4} we know (by
Proposition 2.2.8) that

R4 = Span{e1, e2, e3, e4} = Span{u1,u2, e1, e2, e3, e4}

We can then apply recipe 2, placing u1 and u2 as the left-most vectors. Upon row reducing we get that

A =


1 2 1 0 0 0
0 2 0 1 0 0
2 1 0 0 1 0
0 1 0 0 0 1

 ∼


1 2 1 0 0 0
0 1 0 0 0 1
0 0 −2 0 1 3
0 0 0 1 0 −2

 = B

The pivots columns of B are columns 1, 2, 3, and 4 hence

BR4 =
{

1
0
2
0

 ,


2
2
1
1

 ,


1
0
0
0

 ,


0
1
0
0

}

is a basis for R4 containing the prescribed vectors.
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Next, let’s up the difficulty a little bit and find a basis for a new but increasingly familiar subspace.

Example 4.2.11. Let A =

1 −1 1 0
0 1 −2 3
2 −1 0 3

 and compute dim(Null(A)).

We first need to find Null(A) which involves solving the linear system Ax = 0. We see that1 −1 1 0 0
0 1 −2 3 0
2 −1 0 3 0

 ∼
1 −1 1 0 0

0 1 −2 3 0
0 0 0 0 0


We have 2 free variables so we set x3 = t and x4 = s. Then, by back substitution, we get x2 = 2t− 3s and
x1 = t− 2s hence

x =


x1

x2

x3

x4

 = t


1
2
1
0

+ s


−3
−3
0
1


It then follows immediately that

BNull(A) =
{

1
2
1
0

 ,

−3
−3
0
1

}

is a basis for Null(A) and we can conclude that dim(Null(A)) = 2. This procedure for finding a basis always
works because the free variables will always contribute a 1 to one entry of a basis vector and a 0 to the
corresponding entries of all other vectors. The offset 0’s and 1’s always ensure linear independence of the
spanning vectors that we find, hence a basis is obtained automatically.

This number is so important that it has its own name.

Definition 4.2.12. The nullity of a matrix A, denoted nullity(A), is the number dim(Null(A)).

We will have much more to say about this numerical invariant in the next section, but before ending this
section, we add to the big theorem once more.

Theorem 4.2.13. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.
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4.3 Row Space, Column Space, and Rank

We now introduce several more fundamental subspaces associated to a matrix. Once we have these additional
definitions, we state the all important Rank-Nullity theorem, sometimes known as the fundemantal theorem
of linear algebra. This theorem allows us to “decompose” Rn into disjoint subspaces.

Definition 4.3.1. Let A be an n×m matrix.

• The row space of A is the subspace of Rm spanned by the row vectors of A. It is denoted row(A).

• The column space of A is the subspace of Rn spanned by the columns of A. It is denoted col(A) and
is the set of all outputs of the form Ax or alternatively, just the span of the columns of A.

Combining these definition with our “recipes” from the last section we can deduce that given any matrix
A ∼ B with B in echelon form

• The non-zero rows of B form a basis for row(A).

• The columns of A corresponding to the pivot columns of B form a basis for col(A).

Example 4.3.2.

A =

 1 2 1 −1
0 1 1 0
−1 5 3 0

 ∼
1 2 1 −2

0 1 1 0
0 0 0 1

 = B

Using the recipes, we can see that

Brow(A) =
{

1
2
1
−1

 ,


0
1
1
0

 ,


0
0
0
1

} and Bcol(A) =
{ 1

0
−1

 ,
2

1
5

 ,
−1

0
0

}

You may notice in this example that the row space and column space have the same dimension, even
though one of them is a subspace of R4 and the other one is a subspace of R3. It turns out this phenomenon
is always true.

Theorem 4.3.3. Given any matrix A we have

dim(Row(A)) = dim(Col(A))

Proof. Let B be a matrix in echelon form that is row equivalent to A. Every non-zero row of B contains a
pivot and similarly, the pivot in each pivot column must lie in one of these non-zero rows. This means that
the number of non-zero rows of B must equal the number of pivot columns of B. The number of pivot rows
(resp. columns) is precisely what we use to find bases of these subspaces, hence these numbers always being
equal impllies that row(A) and col(A) must always have the same dimension.

This new numerical invariant also has its own name.

Definition 4.3.4. The rank of a matrix A, denoted rank(A), is the dimension of the row, or column, space
of A. In the above example we have rank(A) = 3 and we say that the matrix A has rank 3.

We now have everything we need to state what is, without question, the most amazing and useful theorem
in this course, known most commonly as the rank-nullity theorem.

Theorem 4.3.5. If A is an n×m matrix then

rank(A) + Nullity(A) = m
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Proof. If A is an n ×m matrix, and A ∼ B, then the number of non-zero rows of B is the rank of A by
definition. This is also equal to the number of pivot columns of B. Each non-pivot column will correspond
to a free variable and each free variable corresponds to a basis vector for Null(A) (think about how we did
this in Example 4.2.11). Putting this all together we have that
rank(A) = the number of pivot columns of B
and
Nullity(A) = the number of non-pivot columns of B.
The total number of columns of B, which is equal to m, is then the sum of the rank(A) and Nullity(A).

The power of this theorem pops up again and again but at this stage, we can already find it useful in
doing routine computations. In particular, if you want to find the rank or nullity of a matrix, you only need
to find one and you get the other for free. This allows you to apply the “find a basis for the null space”
procedure of Example 4.2.11 to find the nullity, or, apply your favorite recipe to find the rank, then the other
numerical invariant follows immediately from rank-nullity.

Example 4.3.6. Consider the following matrix, and an equivalent echelon form

A =

 1 2 1 −1
0 1 1 0
−1 5 3 0

 ∼
1 2 1 −2

0 1 1 0
0 0 0 1

 = B

We saw in the previous example that rank(A) = 3 so we immediately know that this matrix has nullity equal

to 1. You should verify this for yourself and in doing so will see, that
{

5/3
1/3
−1/3

1

} is a basis for Null(A).

We can also relate this theorem to linear transformations. Recall that given a linear transformation
T : Rm → Rn with associated matrix A, we deduced that the span of the columns of A was equal to the
range. If this does not ring a bell, take a look at Definition 2.2.9. With our new terminology, this means
that Col(A) = Range(T ). Moreover, the solution set of Ax = 0 consisted of the vectors x such that
T (x) = 0. In other words, we had ker(T ) = Null(A). This means that rank(A) = dim(Range(T )) and
Nullity(A) = dim(ker(T )). This is a dense paragraph but is worth spending the time to understand every
sentence.

Combining these geometric notions with the rank-nullity theorem we can see that

m = dim(Range(T ) + dim(ker(T ))

It is worth noting that the dimension of the row space being equal to rank(A) and the dimension of the null
space being equal to Nullity(A) says something significant about Rm. Both the row space and null space of
A are subspaces of Rm, whose dimensions add up to m. It is rank-nullity that allows us to conclude that
Rm “decomposes” into the row space and the null space of the given matrix. This would not be possible to
understand without our notions of linear maps and the rank-nullity theorem.

We now finish the section with one more example, followed by one more addition to the big theorem.

Example 4.3.7. Let T : R11 → R9 be given by T (x) = Ax and further assume that T is onto. How many
dimensions of R11 are occupied by ker(T )?

Since T is onto, we know that its range is the entire codomain, that is, Range(T ) = R9. This means that
dim(Range(T )) = dim(Col(A)) = rank(A) = 9. Rank-nullity then implies that

11 = 9 + dim(ker(T ))

hence dim(ker(T )) = 2.
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Theorem 4.3.8. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

This is quite a bit of information so we breifly summarize the main ideas in the following list:

• Null(A) = {x ∈ Rm : Ax = 0} = {x ∈ Rm : T (x) = 0} = ker(T ).

• Col(A) = span of columns of A = Range(T ).

• dim(Col(A)) = dim(Row(A)) = rank(A).

• dim(Null(A)) = Nullity(A).

• If T : Rm → Rn then Null(A) ⊂ Rm, Row(A) ⊂ Rm, and Col(A) ⊂ Rn.
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4.4 Change of Basis

We now encounter the all important idea surrounding changing a basis. This can be one of the trickiest
concepts to understand, but the hard work will pay off. Reading this section several times over may be
helpful in gaining a full understanding and when in doubt, do more examples!

Let’s first address notation. Let x =

[
3
−2

]
∈ R2 be written in the standard basis. The coordinates of x

are expressing its geometric location in the plane. That is, to arrive at the tip of the vector x, you move 3
units to the right of the origin (3 units along e1) and −2 units down from there (−2 units along e2). This
is because

x = 3e1 − 2e2

The coefficients of x in this expression involving the standard basis are what determine its coordinates. This
is the general idea behind change of basis.

Example 4.4.1. Let B =
{[2

7

]
,

[
1
4

]}
be a (non-standard) basis of R2, In this basis we can express the

same vector x as

x = 14

[
2
7

]
− 25

[
1
4

]
and we express this notationally as

[x]B =

[
14
−25

]
With this idea in mind, we can now define this notion in greater generality.

Definition 4.4.2. Let B = {u1,u2, . . . ,un} be a basis for Rn and let

y = a1u1 + a2u2 + · · ·+ anun

then the coordinate vector of y with respect to the basis B is

[y]B =


a1

a2

...
an


Let U =

[
u1 u2 · · · un

]
∈ Rn×n. We call U the change of basis matrix for the basis B (note that

is has the basis vectors as it’s columns). If y is taken to be a vector written in the standard basis, then

U [y]B =
[
u1 · · · un

] a1

...
an

 = a1u1 + a2u2 + · · ·+ anun = y

Example 4.4.3. Let

B =
{ 1

3
−2

 ,
2

0
1

 ,
4

5
1

}

be a basis for R3 and let [x]B =

−2
3
1

. Find x with respect to the standard basis for R3.
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Given the basis B, our change of basis matrix is

U =

 1 2 4
3 0 5
−2 1 1


so we can find x via

x = U [x]B =

 1 2 4
3 0 5
−2 1 1

−2
3
1

 =

 8
−1
8


Note that U took a vector from the non-standard basis to the standard basis.

A natural question one can ask is, how can we go the other direction? That is, if we are given a vector,
written in the standard basis, how can we find its representation in some other non-standard basis?

The key is to look at the equation we get from the change of basis matrix, namely

x = U [x]B

We can see that U is always invertible (by the big theorem) because it’s columns form a basis, hence we
can take the above equation and multiply both sides by U−1 on the left to obtain

U−1x = [x]B

We summarize in the following proposition.

Proposition 4.4.4. Let x be expressed in the standard basis with B = {u1, . . . ,um} a non-standard basis
for Rn. If U =

[
u1 · · · un

]
is the change of basis matrix for the basis B then

U [x]B = x and [x]B = U−1x

Example 4.4.5. Continuing from example 4.4.1, we have B =
{[2

7

]
,

[
1
4

]}
and x =

[
3
−2

]
. Going from the

standard basis to this one we see that

[x]B =

[
14
−25

]
=

[
2 1
7 4

]−1 [
3
−2

]
In words, the proposition is saying that U takes a vector from the non-standard basis to the standard

basis, and its inverse does the opposite.

What remains is to find a fluid way to go from one non-standard basis to another. The short solution is
to “go through the standard basis” but this requires some explination.

Let B1 = {u1, . . . ,um} and B2 = {v1, . . . ,vn} be non-standard bases for Rn. We aim to find a matrix
that takes [x]B1

as input, and outputs [x]B2
. Let Bst denote the standard basis for Rn. We carry out the

task in two steps

1. Go from [x]B1
to [x]Bst .

2. Go from [x]Bst to [x]B2
.

We use matrix multiplication to combine the steps.
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Theorem 4.4.6. Let B1 = {u1, . . . ,um} and B2 = {v1, . . . , vn} be non-standard bases for Rn with change
of basis matrices given by U =

[
u1 · · · un

]
and V =

[
v1 · · · vn

]
respectively. Then

[x]B2
= V −1U [x]B1

and
[x]B1

= U−1V [x]B2

Proof. We know that U and V are change of basis matrices, hence by Proposition 4.4.4 we know that

x = U [x]B1 and [x]B2 = V −1x

Note here that we are writing x to mean [x]Bst (this is standard convention). Combining these two equations
we see that

[x]B2 = V −1x = V −1(U [x]B1) = V −1U [x]B1

This means that the change of basis matrix from B1 to B2 is V −1U . By taking inverses and using the shoes
and socks lemma, we get the second result.

We end this chapter with an illustration of this entire idea. The whole of change of basis can be summa-
rized in the following picture.
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Chapter 5

Determinants

The determinant can be thought of as a useful number that we can associate with a fixed matrix. In
particular, viewing it as a function, it takes an n × n matrix as input and outputs a real number. In this
chapter we will begin by discussing ways to compute the determinant of a matrix, and once we have the
basics down, we will see how it can be used.

5.1 The Determinant Function

We can compute the determinant of n× n matrices, for small n, quite easily.

1. n = 1: If A = [a11] then det(A) = a11.

2. n = 2: If A =

[
a11 a12

a21 a22

]
then det(A) = a11a22 − a12a21.

3. n = 3: If A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 then

det(A) = a11 det
([a22 a23

a32 a33

])
− a12 det

([a21 a23

a31 a33

])
+ a13 det

([a21 a22

a31 a32

])
The following definition is very formal and can be quite complicated to understand. The best way to get

a grasp on it is to do LOTS of examples! Starting with a 3×3 matrix is the best place to begin. For practice

(after reading the definition), compute the determinant of A =

1 2 3
1 −1 4
5 6 2

 and verify that the final answer

is 43.

Definition 5.1.1. Let A be an n× n matrix given by

(aij) =

a11 a12 · · · a1n

...
... · · ·

...
an1 an2 · · · ann


Note that writing a matrix as (aij) is common compact matrix notation, which denotes that the entry in
row i and column j is the real number aij .
For n = 2, . . . , n, let Mij be that (n− 1)× (n− 1) matrix obtained by removing the ith row and jth column
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of A. The minor of aij is the real number det(Mij). The cofactor of aij is Cij = (−1)i+j det(Mij).
The determinant of A is then the scalar

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

= a1jC1j + a2jC2j + · · ·+ anjCnj

where i and j can be any fixed values from 1 up to n. Note that the first equation is known as the cofactor
expansion along the ith row, and the second equation is known as the cofactor expansion along the
jth column.

The profound fact concerning computation of determinants is the following.

Theorem 5.1.2. Given any n×n matrix A, the value of det(A) obtained by performing a cofactor expansion
along the ith row or jth column is always the same.

The main consequence of this theorem is that, when computing the determinant of a matrix, we can seek
out the least labor intensive method possible. In practice, this involves finding the row or column of the
given matrix that has the most zeroes, and computing a cofactor expansion along that row or column. This
is always the least computationally expensive method.

Example 5.1.3. Compute the determinant of

A =


1 2 2 4
1 0 0 3
5 6 0 7
3 1 0 8


Observe that the third column of A has the most zeroes. Moreover, if we compute the cofactor expansion
along the 3rd column, we will only need to compute one minor explicitly (as opposed to as many as 4!).

det(A) = 2 det
(1 0 3

5 6 7
3 1 8

) = 2
(

1 · det
([6 7

1 8

])
+ 3 · det

([5 6
3 1

]))
= 4

5.2 Properties of the Determinant

One other way in which we can compute a determinant is to row reduce the given matrix and track how the
determinant changes at each step. We do so according to the following proposition.

Proposition 5.2.1. Suppose B is an n×n matrix obtained by performing one of the following row operations
on A. The determinant of B and A are related as follows:

1. Switch two rows of A to get B =⇒ det(B) = −det(A).

2. Multiply a row of A by a non-zero constant c to get B =⇒ det(B) = cdet(A).

3. Add a multiple of one row to another to get B =⇒ det(B) = det(A).

This Proposition implies the following shortcuts:

• If A has a row or column of zeroes then det(A) = 0.

• If A has a two identical rows then det(A) = 0.

We also add one more useful trick in computing determinants of triangular matrices.
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Proposition 5.2.2. If A is a triangular matrox, then det(A) is the product of the diagonal entries of A.

Proof. You can do this one yourself! Try drawing an arbitrary 3 × 3 upper triangular matrix (with entries
labeled aij), then compute the determinant by doing a cofactor expansion along the first column or third
row.

A nice (but sort of obvious) corollary of this is the following.

Corollary 5.2.3. det(In) = 1

We now end this chapter with arguably the most useful and important theorems concerning determinants.

Theorem 5.2.4. Let A be an n× n matrix. Then A is invertible if and only if det(A) 6= 0.

Proof. We know that here exists a sequence of row operations taking A to B, where B is in reduced echelon
form. This means that every row of B contains a pivot, or the main diagonal has at least one 0 entry. Since
B is triangular and A ∼ B, we know that det(A) = cdet(B) for some non-zero scalar c. Based on both
possibilities for the diagonal entries, we can conclude that if A was invertible, then every column of B is a
pivot column so the product of the diagonal entries must be non-zero. If there is a non-pivot column, then
there must be a zero entry on the diagonal, hence det(B) = 0.

The second useful fact concerns the determinant of a product.

Proposition 5.2.5. If A and B are n× n matrices, then

det(AB) = det(A) det(B)

The third useful fact, is that when A is invertible, we have a nice explicit form for the determinant of
A−1.

Proposition 5.2.6. If A is invertible, then

det(A−1) =
1

det(A)

Proof. Invertibility of A implies that A−1 exists and satisfies the equation AA−1 = In. Taking determinants
of both sides and using properties of determinants (which ones?) we conclude that

det(AA−1) = det(In) =⇒ det(A) det(A−1) = 1 =⇒ det(A−1) =
1

det(A)

Before ending the chapter with an addition to the big theorem, we add several interesting notes on how
the determinant relates to geometry and area.

Proposition 5.2.7. Let S denote the unit square in R2 and let T : R2 → R2 be a linear map with associated
matrix A. If P = T (S) denotes the image of the unit square under T , then we have Area(P ) = |det(A)|.

This means that if det(A) = 1, the associated linear transformation preserves area. An example of this
is rotation. Building on this, we have a similar result in higher dimensions.

Proposition 5.2.8. Let D be a region of finite volume in Rn and suppose T : Rn → Rn is a linear map with
associated matrix A. If T (D) denotes the image of D under T , then Volume(T (D)) = |det(A)|· Volume(D).

We now end with an updated (and very powerful!) big theorem.
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Theorem 5.2.9. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

11. det(A) 6= 0.
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Chapter 6

Eigenvalues and Diagonalization

All of our hard work thus far will finally pay off in this chapter. Much of linear algebra past this point
is centered around the idea of eigenvalues and eigenvectors and it is certainly something you will want to
remember for future classes in any stem field..

6.1 Eigenvalues and Eigenvectors

Let’s quickly recall the basics of the geometry of linear transformations. Given a linear map T : R2 → R2

given by T (x) = Ax, for some 2 × 2 matrix A, we can plug in any vector x ∈ R2 and T will output a
new vector Ax with a (potentially different) direction and length. The idea of eigenvalues and eigenvectors
investigates when the direction and/or length of the output vector is related to the input vector.

Definition 6.1.1. Let A be an n × n matrix. If u is a non-zero vector and λ ∈ R is a scalar such that
Au = λu, then λ is an eigenvalue of A and u is an eigenvector of A associated with eigenvalue λ.

There are a few fundamental facts concerning eigenvectors that will allow us to gain extra structure on
the set of all eigenvectors associated to some fixed eigenvalue. The first is that the sum of two eigenvectors
associated to the same eigenvalue is another (different!) eigenvector associated to the same eigenvalue (you
should verify this for yourself). We also have a related result.

Proposition 6.1.2. Suppose A is a square matrix and λ is an eigenvalue of A with associated eigenvector
u, that is, Au = λu. Then for any non-zero scalar c, we have that cu is en eigenvector of A associated to λ.

Proof. If Au = λu then A being linear implies that for any c ∈ R

A(cu) = cAu = cλu = λ(cu)

hence cu is en eigenvector of A associated to eigenvalue λ.

Combining the last two facts, we obtain the notion of eigenspaces.

Definition 6.1.3. Let A be an n× n matrix with eigenvalue λ. The set S consisting of the zero vector and
all eigenvectors of A associated with λ forms a subspace of Rn known as the eigenspace associated to
eigenvalue λ, often denoted by Eλ.

Example 6.1.4. Let A =

[
6 −2
5 −1

]
. One can check that if u =

[
1
1

]
and v =

[
2
5

]
then Au = 4u and Av = v.

This means that u is an eigenvector of A of eigenvalue 4 and v is an eigenvector of A with eigenvalue 1. It
follows (by reasons we will soon see) that the eigenspace of eigenvalue 4 is

E4 = Span
{[

1
1

]}
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and the eigenspace of eigenvalue 1 is

E1 = Span
{[

2
5

]}
What we need moving forward is a streamlined way to find eigenvalues and a basis for each associated

eigenspace, when given an arbitrary matrix A. What follows is the reasoning behind how we find eigenvalues.

If we have an eigenvalue/eigenvector pair so that Au = λu for some vector u and scalar λ, then we can
obtain the closely related equation

Au− λu = 0

By rewriting u as Iu, where I is the n × n identity matrix, the above equation can be more compactly
written as

(A− λI)u = 0

Note that λI =

λ . . .

λ

 and if u =

u1

...
un

 then

λIu =

λ . . .

λ


u1

...
un

 =

λu1

...
λun

 = λu

so the expression A−λI does indeed make sense. With this equation being understood, we can now classify
how one finds eigenvalues of a matrix.

Proposition 6.1.5. Let A be an n × n matrix. A scalar λ ∈ R is an eigenvalue of A if and only if
det(A− λI) = 0.

Proof. Summarizing what was said above, we have that λ is an eigenvalue of A if and only if Au = λu for
some vector u 6= 0 if and only if Au − λIu = 0 if and only if (A − λI)u = 0. This means that λ is an
eigenvalue of A if and only if the homogeneous equation (A− λI)u = 0 has a non-trivial solution, and this
is true if and only if A− λI is not invertible (by the big theorem). It follows that A− λI is not invertible
if and only if det(A− λI) = 0 which completes the proof.

The heart of our method lies in this proof. We will soon see that det(A − λI) is a polynomial in the
variable λ (note that λ is merely a placeholder at first and the values of λ that satisfy det(A−λI) = 0 are the
eigenvalues of A). Looking more closely at the polynomial det(A− λI) = 0, we will see that the eigenvalues
of A are the roots of this polynomial. The above proposition then takes the task of finding eigenvalues to
the task of finding roots of a polynomial. In general we call det(A − λI) the characteristic polynomial
of A.

Example 6.1.6. Let A =

[
1 1
2 0

]
. Find the eigenvalues and a basis for each eigenspace.

We first see that

A− λI =

[
1 1
2 0

]
−
[
λ 0
0 λ

]
=

[
1− λ 1

2 −λ

]
and

det(A− λI) = (1− λ)(−λ)− 2 = λ2 − λ− 2 = (λ− 2)(λ+ 1)

We need the solutions to det(A− λI) = 0 and these are the solutions to (λ− 2)(λ+ 1) = 0 hence λ = 2 and
λ = −1 are the eigenvalues of A. It is worth noting that no other scalars are eigenvalues of A, these two are
the only ones. To find bases for the eigenspaces, we then only need to find the vectors u and v respectively,
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that satisfy Au = 2u and Av = −v.

If Ax = λx for some eigenvalue λ, then x satisfies the equation (A − λI)x = 0. In other words, all the
eigenvectors with eigenvalue λ are precisely the vectors in Null(A− λI)! This means that the eigenspace for
eigenvalue λ is the same thing as Null(A− λI). That is

Eλ = Null(A− λI)

We can now find a basis for E−1. We need to find a basis for Null(A − λI) with λ = −1 so we plug in
λ = −1 to A− λI and we get

A+ I =

[
2 1
2 1

]
We see that all vectors in the null space of this matrix are of the form t

[
−1
2

]
for some free variable t, hence

the basis for E−1 is
{[−1

2

]}
. We leave the computation of a basis for E2 to the reader as practice. The

answer you should get is

BE2 =
{[

1
1

]}
Next, we outline so shortcuts that can be used in finding eigenvalues of simple types of matrices.

Example 6.1.7. Find the eigenvalues of the triangular matrix

A =


1 2 0 1
0 1 0 1
0 0 2 0
0 0 0 2


By computing the characteristic polynomial of A we see that

Det(A− λI) = det
(

1− λ 2 0 1
0 1− λ 0 1
0 0 2− λ 0
0 0 0 2− λ

)

Recalling that the determinant of a triangular matrix is the product of the diagonal entries, it follows that

det(A− λI) = (1− λ)2(2− λ)2

Looking back at the matrix A, we can see that the eigenvalues of A are exactly the diagonal entries. This is
in fact true for eigenvalues of all triangular matrices.

Next, let’s find bases for the eigenspaces E1 and E2, using some shortcuts along the way.

To compute a basis for E1, we need to find a basis for Null(A− I) which is

A− I =


0 2 0 1
0 0 0 1
0 0 1 0
0 0 0 1
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We can see that this matrix has three pivot columns hence rank(A− I) = 3. By rank-nullity this means its
null space is 1 dimensional, hence is of the form Span{x} for some non-zero vector x ∈ R4. Since the first

column of A− I is the zero vector, this means that A− I sends e1 to


0
0
0
0

 hence

BE1
=
{

1
0
0
0

}

As an exercise, we leave the computation of a basis for E2 to the reader, but to check your work you
should get

B2 =
{

0
0
1
0

 ,


3
1
0
1

}
No tricks to doing this one, just compute the correct null space in the usual way.

Looking back at the example above, we can see that one of the eigenspaces was one-dimensional while
the other one was two dimensional. This is a phenomenon that is subtle and requires a bit more discussion.

The first thing to note is that if A is an n × n matrix, then the characteristic polynomial det(A − λI)
is always a degree n polynomial. The concept we will need to understand further is that of (algebraic)
multiplicity of a root of a polynomial, which we now define.

Definition 6.1.8. Let P (x) denote a polynomial of degree n, in the variable x, and suppose P (x) is the
characteristic polynomial of some matrix A. If we can factor this polynomial as

P (x) = (x− α)mQ(x)

where Q(α) 6= 0, then we say x = α is an eigenvalue of A with multiplicity m. In other words, the exponent
attached to the linear term of a polynomial is the multiplicity we associate to the root of that polynomial
that comes from the given linear term.

This notion of multiplicity is precisely what we need to say more about dimensions of eigenspaces.

Theorem 6.1.9. Let λ be an eigenvalue of a matrix A and let m(λ) denote the multiplicity of the eigenvalue
λ. Then we always have

dimEλ ≤ m(λ)

That is, the dimension of the eigenspace for eigenvalue λ never exceeds the multiplicity of that eigenvalue.

Looking back at the previous example, we can see that both eigenvalues 1 and 2 have multiplicity 2, yet
dimE1 = 1 and dimE2 = 2. The inequality holds in both cases but we only obtained equality in one. There
is lots more that one can say about multiplicities of eigenvalues but we leave it at this for now, and say a
bit more in the next section. We now end this section with one more important fact, which will be our last
addition to the big theorem.

Proposition 6.1.10. λ = 0 is not an eigenvalue of A if and only if det(A) 6= 0.

Proof. We show that λ = 0 is an eigenvalue of A if and only if det(A) = 0. We can see that λ = 0 is an
eigenvalue of A if and only if det(A− λI) = det(A− 0I) = det(A) = 0, which is all we needed to show.
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Since we can only discuss eigenvalues for square matrices, this proposition can extend our list of results
coming from the big theorem.

Theorem 6.1.11. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

11. det(A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

6.2 Diagonalization

Let’s jump right in.

Definition 6.2.1. An n× n matrix is diagonalizable if there exists n× n matrices Λ and X such that

• Λ is diagonal.

• X is invertible.

and
A = XΛX−1

Note that Λ is the greek capital letter for λ. This is intentional, and we will soon see that the diagonal
entries of Λ are precisely the eigenvalues of A.

Example 6.2.2. If X =

[
1 0
2 1

]
and Λ =

[
4 0
0 −3

]
, then X−1 =

[
1 0
−2 1

]
and XΛX−1 =

[
4 0
14 −3

]
. If

A =

[
4 0
14 −3

]
then we say A is diagonalizable.

This example doesn’t help much. In general, we need to find a way to construct the matrices X and Λ
that diagonalize A, and in doing so, we will see when a given matrix is not diagonalizable. Before embark-
ing on this adventure, it is worth noting one of the many reasons why diagonalization is useful. In many
applied fields, systems can be modeled by matrix multiplication and iterates of our system can be taken via
computing powers of a matrix. If the given matrix is diagonalizable, computing powers can be very easy.
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Assume that A is diagonalizable so that we can write A = XΛX−1, then

A2 = (XΛX−1)(XΛX−1) = XΛ2X−1

and
A3 = A2A = (XΛ2X−1)(XΛX−1) = XΛ3X−1

Continuing this process we can see that
Ak = XΛkX−1

and since Λ is a diagonal matrix, computing powers of it is excessively easy. We now begin the investigation
of when A is diagonalizable by stating the main result and digging into the details.

Theorem 6.2.3. An n × n matrix A is diagonalizable if and only if A has eigenvectors that form a basis
for Rn.

There are a few important things to point out regarding what we mean when we say eigenvectors.

Proposition 6.2.4. If λ1 and λ2 are eigenvalues of a matrix A and λ1 6= λ2, then if x ∈ Eλ1
and y ∈ Eλ2

it is always true that {x,y} form a linearly independent set. That is, eigenvectors corresponding to different
eigenvalues are always linearly independent.

This means that when given a square matrix A we can

1. Find all the eigenvalues of A (by finding roots of det(A = λI) = 0).

2. Find bases for all eigenspaces.

3. Put all basis vectors from different eigenspaces in a set and see if this set forms a basis for Rn. By
way of the above proposition, we know that the eigenvectors will form a basis (called an eigenbasis) if
there are n of them.

We now prove Theorem 6.2.3.

Proof. Let u1, . . . ,un be n (linearly independent) eigenvectors for a matrix A, with eigenvalues labeled
λ1, . . . , λn (note here that we are assuming there are n distinct eigenvalues for simplicity of the proof but
this is not always the case), so that B = {u1, . . . ,un} forms an (eigen)basis for Rn. Let X =

[
u1 . . . un

]
and

Λ =

λ1

. . .

λn


be the diagonal matrix with eigenvalues on the diagonal. Since B is a basis for Rn we know that X is
invertible, by the big theorem. Looking at the matrix multiplication, we see that

AX = A
[
u1 . . . un

]
=
[
Au1 . . . Aun

]
=
[
λ1u1 . . . λnun

]
=
[
u1 . . . un

] λ1

. . .

λn

 = XΛ

Since AX = XΛ we can conclude that A = XΛX−1 and A is diagonalizable.

Example 6.2.5. Let A =

[
4 −2
4 −2

]
and show that A is diagonalizable by finding matrices X and Λ such

that A = XΛX−1.
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We begin by finding the eigenvalues of A as well as bases for the eigenspaces. By computing the charac-
teristic polynomial for A we see that

det(A− λI) = −(4− λ)(2 + λ) + 8 = −(8 + 2λ+ λ2) + 8 = λ2 − 2λ = λ(λ− 2) = 0

This means that λ = 0, 2 are the eigenvalues of A. In computing bases for both eigenspaces, we just need to
find bases for Null(A) and Null(A− 2I) respectively. We get that

Null(A) = Span
{[1

2

]}
and Null(A = 2I) = Span

{[1
1

]}
Following the proof of Theorem 6.2.3, we set X =

[
1 1
2 1

]
and Λ =

[
0 0
0 2

]
and these are precisely the

matrices that diagonalize A. Note the the order in which we place the vectors is very important, if we
swapped the order of 0 and 2, on the diagonal of Λ, while leaving the columns of X unchanged, the resulting
matrix product would not equal A. You must always have the columns of X correspond, in the same order,
with the eigenvalues for those column vectors. Moreover, if you have an eigenvalue of multiplicity k, then
there will be exactly k diagonal entries of Λ that are equal to that given eigenvalue.

Example 6.2.6. Construct a 3× 3 matrix A with the following eigenvalues and eigenvectors.

λ1 = 2,u1 =

0
1
0

 λ2 = −1,u2 =

−1
0
2

 λ3 = 5,u3 =

4
4
2


This can quickly be done by working backwards through the mechanics of the proof of Theorem 6.2.3. Let

X =

0 −1 4
1 0 4
0 2 2

 and Λ =

2 0 0
0 −1 0
0 0 5


By computing X−1 (which we know exists), the resulting matrix XΛX−1 will have the prescribed eigenvalues
and eigenvectors.

We now use the full strength of Theorem 6.2.3.

Example 6.2.7. Is A =

[
1 1
0 1

]
diagonalizable?

It suffices to see if there exists a basis of eigenvectors of A. We have

det(A− λI) = det
([

1− λ 1
0 1− λ

])
= (1− λ)2

hence 1 is the only eigenvalue of A, with multiplicity 2. Since we need a basis of eigenvectors in order to
diagonalize A, we must have the dimension of E1 be equal to 2. If it is not, then there is no way for our
eigenvectors to form a basis for R2, since we will not have enough of them. In computing the eigenspace we
see that

A− I =

[
0 1
0 0

]
If we wanted, we could stop right here since the null space of this matrix can never be 2 dimensional,
because it has rank 1 (rank-nullity is being used here). If we want to be more explicit, we can directly
compute E1 = Null(A− I) and find that

Null(A− I) = Span
{[1

0

]}
Regardless of the argument we prefer, we can now see that A is not diagonalizable.
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Shortcuts like this one can be very helpful in practice. There is one shortcut in particular that can really
come in handy.

Proposition 6.2.8. Let A be an n× n matrix and assume that {λ1, . . . , λn} are distinct eigenvalues (the
word distinct here means that there are exactly n eigenvalues, no two of which are equal), then A is always
diagonalizable.

Proof. If A has n distinct eigenvalues, then the characteristic polynomial of A has exactly n distinct roots.
That is,

det(A− λI) = (λ− λ1)(λ− λ2) · · · (λ− λn)

This means that the multiplicity of each eigenvalue is 1. Now, recalling that dim(Eλ) ≤ m(λ) for all
eigenvalues, we have that dim(Eλi) ≤ m(λi) = 1 for all i = 1, . . . , n, hence we must have dim(Eλi) = 1 for
all i, because eigenspaces of actual eigenvalues of a matrix are never 0 dimensional (in fact, the only instance
when Eλ = {0} for some matrix A is when λ is not and eigenvalue of A). This means that we get exactly
one (linearly independent) eigenvector coming from each eigenspace, of which there are n in total. Putting
them all together in one set, we obtain a set of n linearly indepedent vectors in Rn, which (by the theorem)
forms our desired eigenbasis. This implies that A is diagonalizable.

Example 6.2.9. Is A =

1 1 1
0 2 1
0 0 3

 diagonalizable?

Recalling our nice little trick for triangular matrices, we can see that the eigenvalues are 1, 2, and 3
respectively, which are distinct! This means that A is diagonalizable, by the above proposition.

Although this proposition is great, we still need to treat it with care. In particular, not all diagonalizable
matrices have distinct eigenvalues.

For an easy example, one should note that the zero matrix is diagonalizable. Moreover, if we consider

the identity matrix I =

[
1 0
0 1

]
, then we can write I as

I = III−1

which (in a silly way) satisfies the definition of being diagonalizable. Moreover, we could compute the null
space of I − I, and see that it admits a basis of eigenvectors (in particular it admits the standard basis).

Before ending this chapter, we provide one last alternative way to check if a matrix is diagonalizable.
One can think of this as a generalization of the proposition on distinct eigenvalues.

Proposition 6.2.10. Suppose A is an n × n matrix with only real eigenvalues (so none of them are
complex numbers). A is diagonalizable if and only if the dimension of each eigenspace is equal to the
multiplicity of the corresponding eigenvalue.

In general, one calls the dimension of Eλ the geometric multiplicity of λ whereas the usual multiplicity
m(λ) is known as the algebraic multiplicity. This proposition is saying that the geometric multiplicity
is always less than or equal to the algebraic multiplicity, and when they are equal, the given matrix is
diagonalizable.

Proof. An n× n matrix A is diagonalizable is and only if it admits n linearly independent eigenvectors (by
Theorem 6.2.3). Moreover, each eigenspace has dimension no greater than the multiplicity of the associated
eigenvalue, i.e. dim(Eλ) ≤ m(λ). Since A is an n×n matrix, the sum of the multiplicities of the eigenvalues
must equal n, because det(A − λI) is a degree n polynomial. Lastly, since the eigenvectors coming from
different eigenspaces are always linearly independent, we can conclude that the sum of the dimensions of all
eigenspaces equals n. Counting up one basis vector for each dimension, we end up with exactly n eigenvectors,
hence a basis for Rn, completing the proof.
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This marks the end of the introductory
material. We resume with a ”review” of

eigenvalues, introducing a new topic in the
next chapter.
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Chapter 7

Review of Eigenvalues and
Diagonalization

To begin our review, lets lay out some possibly new terminology and notation. When we say the word
“vector space” V , we mean a set of ”vectors”, such that if u,v ∈ V , then u + v ∈ V , and if r ∈ R and u ∈ V
then ru ∈ V . We also always have the zero vector in V , which is also something that should be shown in
practice. When we hear the word vector space we should just think to ourselves, “subspace” just like we
learned in our first linear algenra course.
We will see that what we take as our “vectors” can vary greatly. We have gotten quite used to one vector
space, namely Rn, but we are about to see another.

7.1 Eigenvalues and Eigenvectors

Definition 7.1.1. Define Rm×n to be the vector space of m × n matrices with real number entries. That

is, using compact matrix notation and writing A = (aij) =

a11 a12 · · · a1n

...
... · · ·

...
am1 am2 · · · amn

 we have

Rm×n =
{
A = (aij) : aij ∈ R ∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , n

}
Recalling that m × n matrices represent linear transformations from Rn to Rm, given some A ∈ Rm×n

we have A : Rn → Rm given by x 7→ Ax.
Now onto the definition of eigenvalues, eigenvectors, and eigenspaces. Note that the definition only makes

sense for square matrices so for the remainder of this section, any matrix A is assumed to be in the vectpr
space Rn×n.

Definition 7.1.2. Let A ∈ Rn×n. If there exists a non-zero vector x and some scalar λ ∈ R such that
Ax = λx we say that x is an eigenvector of A with eigenvalue λ.

Along with eigenvalues come subspaces which leads us to the notion of an eigenspace.

Definition 7.1.3. The eigenspace of eigenvalue λ is defined to be Eλ = Null(A − λI). It is the vector
space (subspace) consisting of all eigenvectors with eigenvalue λ.

From this definition we may recall that eigenvalues are the roots of a polynomial that relates to the
matrix A. This is called the characteristic polynomial and is given by det(A− λI). This gives the following
crucial proposition which is our main tool for finding eigenvalues in practice.
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Proposition 7.1.4. λ is an eigenvalue of A if and only if det(A− λI) = 0

Proof. See online notes for a proof

Example 7.1.5. Let A ∈ R2×2 be the linear map that reflects the plane about the line y = x. To find the
matrix of this we need to recall what is arguably the most useful fact from our first course in linear algebra.

Matrix of a linear transformation

Given a linear transformation T : Rn → Rm, the matrix for T can be written as[
T (e1) T (e2) · · · T (en)

]
This means any linear transformation is completely determined by where it takes a basis.

Using this fact, we find that the matrix for the linear transformation mentioned above is A =

[
0 1
1 0

]
.

We find the eigenvalues and bases for eigenspaces in three steps.
Step 1: det(A− λI) = λ2 − 1
Step 2: Solving det(A− λI) = λ2 − 1 = 0 we find that the eigenvalues are λ = ±1
Step 3: For each λ, we find a basis of Eλ = Null(A− λI)

λ = 1 =⇒ A− I =

[
−1 1
1 −1

]
∼
[
−1 1
0 0

]
which gives the linear system − x1 + x2 = 0 =⇒ x1 = x2

This implies that E1 = Span
{[

1
1

]}
.

λ = −1 =⇒ A+ I =

[
1 1
1 1

]
∼
[
1 1
0 0

]
which gives the linear system x1 + x2 = 0 =⇒ x1 = x2

This implies that E−1 = Span
{[−1

1

]}
.

Along with the notion of an eigenvalue comes its multiplicity. When we first saw multiplicities we
defined it to be an exponent that was tied to the characteristic polynomial. This was in fact just one type of
multiplicity, and there is one more, whiich we will soon see does not always agree with our original definition.
The original definition we had is what was known as the algebraic multiplicity. Before seeing the definition,
we recall that for any A ∈ Rn×n, the characteristic polynomial det(A− λI) is a degree n polynomial. This
will good to keep in the back of our minds.

Definition 7.1.6. Denote the characteristic polynomial by p(λ). We can factor p as

det(A− λI) = p(λ) = (λ− λ1)α1(λ− λ2)α2 · · · (λ− λk)αk

where α1 + α2 + · · ·+ αk = n and λ1, . . . , λk are the eigenvalues. We say that the algebraic multiplicity
of the eigenvalue λi is the exponent αi. We denote this value by AM(λi).

Note that from the fact that the degree of det(A − λI) equals n, we can conclude that the sum of the
algebraic multiplicities equals n.

We now come across our first new definition of the course.

Definition 7.1.7. The geometric multiplicity of the eigenvalue λi, denoted GM(λi), is the dimension of
its corresponding eigenspace. That is

GM(λi) = dim(Eλi)
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One may be inclined to ask when these two quanities are equal.

Example 7.1.8. Let A =

[
8 −9
4 −4

]
. A quick computation of the characteristic polynomial shows that

p(λ) = (λ− 2)2 so we can conclude that AM(2) = 2. To find the geometric multiplicity, we do a little more
matrix algebra.

A− λI =

[
8− λ −9

4 −4− λ

]
=⇒ A− 2I =

[
6 −9
4 −6

]
We want to find dim(E2) = dim(Null(A − 2I)). The columns of this matrix are linearly dependent so we
know that it has nonzero nullity, but the only 2× 2 matrix with nullity equal to 2 is the zero matrix. From
this we can conclude that dim(E2) = 1 hence GM(2) < AM(2).

This example gives us some sense of how these two values are related. The following result will be referred
to as the AM-GM inequality.

Proposition 7.1.9. AM-GM inequality
Given A ∈ Rn×n with eigenvalues λi for i = 1, 2, . . . , k we always have GM(λi) ≤ AM(λi) ∀i.
Question 7.1.10. For what matrices are these values equal?

Great question! The answer is that the values are equal precisely when A is diagonalizable. This answer
is precisely the content of the next section, but first, we state several more general facts about eigenvalues.

1. If λ is an eigenvalue of A then λk is an eigenvalue of Ak.

Why?

Ax = λx =⇒ A2x = A(Ax) = Aλx = λAx = λ2x =⇒ A3x = A(A2x) = Aλ2x = λ2Ax = λ3x

Continuing with this process we can see that

Akx = A(Ak−1)x = Aλk−1x = λk−1Ax = λkx

2. If λ is an eigenvalue of A and A is invertible, then λ−1 = 1
λ is an eigenvalue of A−1.

Why? If Ax − λx, we can multiply both sides of this equation on the left by A−1 (which we know
exists!). We then get x = A−1λx which implies that 1

λx = A−1x. Note that the eigenvalues change
but the eigenvectors don’t.

3. A ∈ Rn×n has n eigenvalues (counting (algebraic) multiplicities).

Why? To see why we need a “fundamental” theorem that we should never forget.

Fundamental Theorem of Algebra

Let p(x) be a degree n polynomial. Then n has (counting multiplicities), precisely n complex
roots. In the language of characteristic polynomials, this means we can factor the characteristic
polynomial of any square matrix as

det(A− λI) = (λ− λ1)(λ− λ2) · · · (λ− λn)

Some example of this include

x2 − 1 = 0 =⇒ x = ±1 =⇒ x2 − 1 = (x− 1)(x+ 1) = 0

or in the case of complex roots

x2 + 1 = 0 =⇒ x = ±i =⇒ x2 + 1 = (x− i)(x+ i) = 0

Notice that the coefficients of this polynomial were real numbers, not complex numbers. This hints at
the fact that matrices with real number entries can have complex eigenvalues.
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7.1.1 Complex Eigenvalues

It will be important to keep in mind that our set of possible eigenvalues can leave the set of real numbers and
be complex. We have no easy way to get a geometric picture from this, but nonetheless it is a case we must
consider. Rotation matrices are some of most classical examples of real matrices with complex eigenvalues.

Example 7.1.11. Let A denote the linear transformation that rotates any vector R2 by π/2. Recall that
rotation matrices in R2 have a generic form

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
From this we can quickly see that

A =

[
0 −1
1 0

]
We compute its characteristic polynomial and see that

det

[
−λ −1
1 −λ

]
= λ2 + 1 = 0 =⇒ λ = ±i

If we were to go further and compute the eigenvectors we would see that an eigenvector of eigenvalue i is

[
i
1

]
and an eigenvector of eigenvalue −i is

[
1
i

]
. As mentioned, geometry is hopeless here, but after we develop

some more machinery we will be able to make some geometric sense of this.

Example 7.1.12. If B denoted rotation by π rather than π/2, we could obtain B from A by recalling that
the product of matrices corresponds to the composition of linear transformations. Since rotation by π is the
same as rotation by π/2 twice, we would have that B = A2. Geometrically, every vector will flip its sign,
which is the same as saying that it has eigenvalue −1. Algebraically, a quick computation shows that

B = A2 =

[
−1 0
0 −1

]
hence

det

[
−1− λ 0

0 −1− λ

]
= (−1− λ)2 = (λ+ 1)2 =⇒ λ = −1 with AM(−1) = 2

. This is one of the few rotation matrices that has real eigenvalues. To quickly tie this into the notion of
geometric multiplicity, we observe that

E−1 = Null(A2 + I) = Null(−I + I) = Null(O22) = R2

so here GM(−1) = AM(−1) = 2.

7.2 Diagonalization

Definition 7.2.1. A matrix A ∈ Rn×n is diagonalizable if there exists an invertible matrix X and a
diagonal matrix Λ (this is a capital lambda) such that

A = XΛX−1

. Recall that Λ = diag((λ1, λ2, . . . , λn), the diagonal matrix with the eigenvalues of A on the diagonal.
Moreover, the columns of X are the eigenbasis vectors, in order.
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The following theorem is an important one, and we can take it as an equivalent definition of diagonaliz-
ability.

Theorem 7.2.2. If A ∈ Rn×n has n linearly independent eigenvectors, then A is diagonalizable.

Proof. see online notes for a proof

As an exercise, you should try to convince yourself of the following fact, which will prove (depending on
your preference) to be the most useful equivalent definition of diagonalizability.

Theorem 7.2.3. A ∈ Rn×n is diagonalizable if and only if AM(λ) = GM(λ) for all eigenvalues λ.

Proof. see online notes for a proof

We have already seen some examples of diagonalizable matrices, namely Example 7.1.12. Here is one
more:

Example 7.2.4. A =

[
0 1
1 0

]
. The eigenvalues of this matrix are λ = ±1 with respective eigenspaces given

by E1 = Span
{[

1
1

]}
and E−1 = Span

{[−1
1

]}
. Using the basis vectors for our eigenspaces we obtain the

eigenbasis of R2 given by
{[1

1

]
,

[
−1
1

]}
. Since we have two linearly independent eigenvectors, we know A

is diagonalizable with diagonalization given by

A =

[
1 −1
1 1

] [
1 0
0 −1

] [
1 −1
1 1

]−1

In the first linear algebra course, we saw that diagonalization made computing powers of a matrix quite
easy. If A = XΛX−1 then

Ak = (XΛX−1)(XΛX−1) · · · (XΛX−1)︸ ︷︷ ︸
k times

= XΛkX−1

Recalling basic facts about products of disgonal matrices we can also conclude that Λ = diag(λk1 , λ
k
2 , . . . , λ

k
n).

Continuing with our example above, we can see that

A53 =

[
0 1
1 0

]53

=

[
1 −1
1 1

] [
1 0
0 −1

]53 [
1 −1
1 1

]−1

=

[
1 −1
1 1

] [
1 0
0 −1

] [
1 −1
1 1

]−1

=

[
0 1
1 0

]
In general, it may take some work to see if a matrix ia diagonalizable or not but in certain cases, we can

deduce the result fairly quickly.

Theorem 7.2.5. If A ∈ Rn×n has n distinct eigenvalues, then A is diagonalizable.

Proof. First note that if λi is an eigenvalue of A it must have some non-zero eigenvector x such that
Ax = λix. Moreover, for any x ∈ Eλi , we know that cx ∈ Eλi for any c ∈ R, thus if x ∈ Eλi then
Span{x} ⊆ Eλi . This means that for each eigenvalue λi, we have GM(λi) > 0.
If A has n distinct eigenvalues, then we can list them out λ1, λ2, . . . , λn and are guaranteed that λi 6= λj for
all i 6= j. This means that the characteristic polynomial looks lke

p(λ) = (λ− λ1) · · · (λ− λn)

hence AM(λi) = 1 ∀i. From proposition 7.1.9 we can conclude that

0 < GM(λi) ≤ AM(λi) = 1

hence AM(λi) = GM(λi) ∀i. The result now follows from 7.2.3.
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Warning: Not all matrices are diagonalizable! You must have n linearly independent eigenvectors so that

the matrix X−1 exists.

Example 7.2.6. Let A =

[
6 −1
1 4

]
. In finding a basis of eigenvectors we see that

det

[
6− λ −1

1 4− λ

]
= λ2 − 10λ+ 25 = (λ− 5)2 = 0 =⇒ λ = 5 with AM(5) = 2

This tells us that the eigenvalues are not distinct so this may not be diagonalizable. Computing the eigenspace
we see that

E5 = Null

[
1 −1
1 −1

]
= Null

[
1 −1
0 0

]
= Span

{[1
1

]}
so GM(5) = 1 and AM(5) 6= GM(5). This means A is not diagonalizable because theres not enough eigen-
vectors.

We end the section with a quick notational refresher, which we will use a lot.

Definition 7.2.7. Given A = (aij) ∈ Rm×n, A transpose, denoted A> is the matrix obtained by swapping
rows and columns of A. That is A> = (aji) ∈ Rn×m.

Example 7.2.8. If A =

[
1 −1
3 1

]
then A> =

[
1 3
−1 1

]
.

We finish off the chapter with a completely new notion.

7.3 Similar Matrices

Definition 7.3.1. Two matrices A and C are similar, sometimes denoted A ∼ C, if there exists an invertible
matrix B such that

A = BCB−1

There is one main example that probably comes to mind.

Example 7.3.2. If A is diagonalizable, then A = XΛX−1 for some λ and some X, hence A ∼ Λ.

Theorem 7.3.3. If A ∼ C then A and C have the same eigenvalues.

Proof. If A ∼ C then ∃ an invertible matrix B such that A = BCB−1. Our goal is to show that A and C
have the same eigenvalues. Suppose Cx = λx, then since AB = BC we know that ABx = BCx, hence

A(Bx) = B(Cx) = Bλx = λBx

This implies that λ is an eigenvalue of A (with eigenvector Bx), hence all eigenvalues of C are also eigenvalues
of A.
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Chapter 8

Polynomial Vector Spaces

Now that we have some concrete things to think when we hear the word “vector space”, we can introduce
some new and less obvious vector spaces.

8.1 R[x]: The polynomial vector space

Before we define R[x], we define smaller pieces of it.

Definition 8.1.1.

R[x]n = {anxn+an−1x
n−1+· · ·+a1x+a0 : ai ∈ R} = {polynomials of degree at most n with coefficients in R}

You should convince yourself that this is indeed a vector space with polynomials of degree at most n as
its vectors. With this new definition, we can ask ourselves some natural questions.

Question 8.1.2. What is a basis for R[x]n?

When we think of a basis of a vector space we think of the fundamental building blocks of that vector
space. That is, what are the vectors that every vector is a linear combination of? Looking at the definition
above, its not too hard to see that every degree n polynomial has a general form, and any given polynomial
differs from another by its coefficients. Looking at a polynomial as a linear combination of monomials
(elements of the form xk), we can see that every degree at most n polynomial is a linear combination of
the monomials 1, x, x2, . . . , xn, hence a basis for R[x]n is given by {1, x, x2, . . . , xn}. We call this basis the
monomial basis.

Question 8.1.3. What is dim(R[x]n)?

This question follows pretty quickly from the previous one and we get that dim(R[x]n) = n+ 1.
We can now define a larger vector space.

Definition 8.1.4.

R[x] = {· · ·+ anx
n + an−1x

n−1 + · · ·+ a1x+ a0 : ai ∈ R} = {All polynomials with coefficients in R}

For every positive integer n, this vector space has R[x]n as a subspace of it. This vector space is a little
harder to understand, as can be seen by asking the same questions.

Question 8.1.5. What is a basis for R[x]?

We can take polynomials of any degree so writing all of these as a linear combination of monomials, we
get a monomial basis given by {1, x, x2, . . .}
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Question 8.1.6. What is dim(R[x])?

Since dimension is defined to be the size of a basis, we see that R[x] has infinite dimension! This is
likely our first encounter with infinite-dimensional vector spaces. The first thing to notice about them is
that we can use nifty theorems like Rank-Nullity, and we have to be a little more tactical in the way that
we approach problems.

8.1.1 Linear Maps between Polynomial Vector Spaces

The best way to get a grasp on this is through examples.

Example 8.1.7. (Multiplication by x2)

T : R[x]n → R[x]n+2 p(x) 7→ x2p(x)

For example T (xn + x− 5) = xn+2 + x3 − 5x2. You should check for yourself that T indeed defines a linear
map (satisfies the two main properties) between the indicated domain and codomain vector spaces.

Example 8.1.8. (Integration)

T : R[x] 7→ R p(x) 7→
∫ 1

0

p(x) dx

For example,

T (x2 − 1) =

∫ 1

0

x2 − 1 dx =
x3

3
− x
∣∣∣1
0

=
1

3
− 1 = −2

3

ou should check for yourself that T indeed defines a linear map (satisfies the two main properties) between
the indicated domain and codomain vector spaces, i.e. integration is linear!

We can use linear maps like this to find interesting subspaces of R[x]n.

Example 8.1.9. Recall that the kernel of a linear map is always a subspace of the domain. Using the map
of Example 8.1.8 we have that

S = {p(x) ∈ R[x] :

∫ 1

0

p(x) = 0}

is a subspace of R[x] because it is the kernel of the integration map.

Example 8.1.10. (Differentiation)

D : R[x]n → R[x]n p(x) 7→ p′(x)

where p′(x) = d
dx (p(x)), usual differentiation. For example D(xn + x− 5) = nxn−1 + 1. Let’s verify that it

is linear.

1) D(p(x) + q(x)) = (p(x) + q(x))′ = p′(x) + q′(x) = D(p(x)) +D(q(x))

2) For r ∈ R we have D(rp(x)) = (rp(x))′ = rp′(x) = rD(p(x))
Now, since every linear map is given by a matrix, lets find the matrix of the linear map D : R[x]4 → R[x]4.

Step 1: Recall from 9.1 that we have a formula for the matrix of any linear transformation. This matrix
need to be written in terms of specified bases of the domain and codomain. That is, we need a set of domain
basis vectors to plug in to D, and when we look at the outputs, we must write those outputs in terms of a set
of specified basis vectors of the codomain. Since the domain and codomain of this linear map are the same,
we will write this map in terms of the usual monomial bases of the domain and codomain. Unless otherwise
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specified, we always write the matrix of a linear map in terms of standard bases of the domain and codomain.

Step 2: We associate degree 4 polynomials with vectors in R5 (recall that R[x]4 is 5-dimensional) via

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 ↔


a4

a3

a2

a1

a0



so for example, 3x4 + 7x2 − 3x− 12 corresponds to


3
0
7
−3
−12


Step 3: Determine the matrix for D. We need to find D(e1), D(e2), D(e3), D(e4), D(e5).

e1 : e1 =


1
0
0
0
0

↔ x4 and D(x4) = 4x3 ↔


0
4
0
0
0

 so D(e1) = 4e2

e2 : e2 =


0
1
0
0
0

↔ x3 and D(x3) = 3x2 ↔


0
0
3
0
0

 so D(e2) = 3e3

Continuing with these computations we get that D(e3) = 2e4, D(e4) = e5, D(e5) = 0 thus the matrix is

D =


0 0 0 0 0
4 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 1 0


We can check that this actually works. (3x4 + 2x2 + 9x)′ = 12x3 + 4x + 9 and applying the associated

vector to our newfound matrix we see that

D =


0 0 0 0 0
4 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 1 0




3
0
2
9
0

 =


0
12
0
4
9

↔ 12x3 + 4x+ 9

We finish off with some questions concerning other properties of D.

Question 8.1.11. Is D one-to-one?

Recall that any linear map is one-to-one if and only if the columns of its associated matrix are linearly
independent. Alternatively, T : V →W is one-to-one if and only if ker(T ) = {x ∈ V : T (x) = 0} = {0}. The
columns of D are {4e2, 3e3, 2e4, e1,0}, which is a linearly dependent set. This means that ker(D) 6= {0}.

An example of a vector in the kernel is


0
0
0
0
k

, i.e. constants.
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Question 8.1.12. Is D onto?

Recall that any linear map is onto if and only if the columns of its associated matrix span the codomain.
Alternatively, T : V → W is onto if and only if Range(T ) = {y ∈ W : y = T (x) for some x ∈ V } = W .
Looking at the matrix D, we can see that Span{e1} 6⊆ Col(D), so D is not onto. We can in fact find a
polynomial in the codomain that does not get mapped to. Namely any multiple of e1 (any polynomial with
an x4 term.

We will see in some problems, that when we adjust the domain and codomain of some linear maps, the
behavior of the maps themselves change.

8.2 Some Helpful Logic Facts

Before taking our first look at the problem set, we take a quick peek at several ways to logically argue that
somethig is true. The problems in these notes ask for true facts to be argued and this word is used to
emphasize that a formal proof is not needed. No knowledge of proofs is required to get through this material
but there are three logical equivalences that one can use to argue that something is true, and you may find
them helpful from time to time.

Direct: The direct method is the most commonly used one. Given an if-then statement of the form
P =⇒ Q (pronounced P implies Q or if P then Q), one assumes the if statement and works to conclude
the statement that comes after then.

Example 8.2.1. Fix a matrix A ∈ Rm×n and let S =
{

x ∈ Rn : A2x = Ax
}

. Argue that if x,y ∈ S, then

x + y ∈ S.

Doing this directly, we assume that x,y ∈ S and want to conclude that x + y ∈ S. Since x,y ∈ S we
know that A2x = Ax and A2y = Ay. Adding them up, we check that they are still in S and see that

A2(x + y) = A2x +A2y = Ax +Ay = A(x + y)

Note that the second to last equality is where we used our assumption.

The next method is often a good idea when arguing something directly seems too hard. In many cases
like these, this other method proves much easier.

Contrapositive: Given the statement,“if P then Q”, its contrapositive is obtained by reversing the
direction that you read it, and negating both statements. That is, the contrapositive of P =⇒ Q is, not
Q implies not P , i.e “if Q is false then P is false”. This is logically equivalent to the statement if P then Q
and can be a useful method to show that P =⇒ Q is a true statement.

Example 8.2.2. Consider the statement, “if x2 − 6x+ 5 is even, then x is odd”. In doing this directly, we
would assume that there is some number a such that x2− 6x+ 5 = 2a but then we would need to show that
x = 2b + 1 for some number b, and this feels hard. It turns out the contrapositive makes this much more
tractable.

The contrapositive statement is that “if x is not odd, then x2 = 6x+ 5 is not even”, in other words, “if
x is even, then x2 = 6x+ 5 is odd”. Assuming that x = 2a for some number a, we plug it into the equation
and get that

(2a)2 − 6(2a) + 5 = 4a2 − 12a+ 4 + 1 = 2(2a2 − 6a+ 2) + 1

Therefore, x = 2b+ 1 where b = 2a2 − 6a+ 2 and consequently, x2 − 6x+ 5 is odd.
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The last one has a slightly different flavor but can also be very effective if you’re stuck.

Contradiction: Given the statement “if P then Q”, one can show it is true by assuming that P is true
and Q is false, then hunting down a statement that is obviously false. This obviously false statement is
what we call the contradiction, and it implies that our original assumption that P is true but Q is false, was
a false assumption all together. Therefore, it must have been true that if P was true then Q must also be
true.

Example 8.2.3. Consider the statement, “If {x1, . . . ,xm} form a basis for Rn, then m = n”. The assump-
tion here that we begin with is that {x1, . . . ,xm} form a basis for Rn and n 6= m. The latter assumption
tells us that either n < m or n > m,
If n < m then we have more then n vectors in Rn and no set of more than n vectors can be linearly inde-
pendent. That is, {x1, . . . ,xm} form a basis consisting of linearly dependent vectors. This is super duper
false because bases must be linearly independent by definition, hence a contradiction.
If n > m, then we have a basis for Rn consisting of fewer than n vectors, but no set of fewer than n vectors
can ever span Rn, giving us another contradiction. Therefore, our assumption must have been false, hence
if {x1, . . . ,xm} form a basis for Rn it must always be true that m = n.

Before ending the section we mention two other quick things.

When are two sets equal: By definition, two sets, A and B, are equal if any element of A is also an
element of B, and similarly, every element of B is an element of A. If only one of these conditions holds, say
every element of A is an element of B, but not every element of B is an element of A, then we say A is a
subset of B and write A ⊂ B.

The key idea is to take an arbitrary element of one set, and show it belongs to the other, then repeat the
process in the other direction. Using the notation above we can write out this process in a series of steps.

i) Pick an arbitrary element a ∈ A, and show that a ∈ B. This means that A ⊂ B.
ii) Pick an arbitrary element b ∈ B and show that b ∈ A. This shows that B ⊂ A.

To summarize, we have that A = B if and only if A ⊂ B and B ⊂ A. This will prove to be useful a
number of times throughout the course. Remember, at its core, many of the things we look at are sets!
For example, Col(A),Row(A),Null(A),Range(T ), and ker(T ) are all sets, so if we want to argue that any of
them are equal, we use methods similar to what we’ve just described.

Uniqueness: This is a more subtle concept but it will come up twice. We mainly use it when think-
ing about diagonalizations of matrices. The main statement is that given a diagonalizable matrix A, its
diagonalization A = XΛX−1 is unique (up to reordering of the columns). This means that there is
only one diagonalzation of A and if you are looking at two, they must be the same. For example, if
A = XΛX−1 = Y DY −1, up to reordering of the columns of Y and X, we must have X = Y and Λ = D.
The points in the course when this could prove useful should be obvious when they show up. Now, onto the
problems!

8.3 Problem Set 1

1. Subtleties with similarity

We saw in Theorem 1.3.3 of the notes that similar matrices have the same eigenvalues. The converse
is not always true.

(a) Find examples of two matrices with the same eigenvalues (counting multiplicities) that are similar
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(b) Find examples of two other matrices with the same eigenvalues (counting multiplicities) that are
not similar.

(c) Argue that if A and B have the same distinct eigenvalues, then A and B are similar.

2. Finding Eigenspaces

Compute all eigenvalues of the following matrix and a basis for each eigenspace:

A =

 1 −1 0
−1 2 −1
0 −1 1

 .
Answer the following questions using your computations:

(a) What are the eigenvalues and eigenvectors of A3 and A+ 10I?

(b) What are the eigenvalues and eigenvectors of A>? In general, how are the eigenvalues of A related
to the eigenvalues of A>? explain why

(c) Is A diagonalizable? If yes, write its diagonalization and compute A3.

(d) From your eigenvalue computation, decide if A is invertible. If yes, what are the eigenvalues of
A−1?

(e) Can you tell definitively from the eigenvalues of a square matrix A whether A is invertible? If
yes, say how. If not, give an example or reason to justify your answer.

3. Invertibility vs. Diagonalizablilty

In each of the following cases, find an example of a matrix that satisfies the given conditions or say
why there can be no such matrix. You must explicitly show the diagonalization of the matrix you
chose or explain why your matrix cannot be diagonalized by computing eigenvalues and eigenvectors.
Small matrices will work in all cases — 2× 2 or 3× 3.

(a) a matrix that is invertible and diagonalizable

(b) a matrix that is invertible but not diagonalizable

(c) a matrix that is singular but diagonalizable

(d) a matrix that is singular and not diagonalizable

What can you conclude about the relationship between invertibility and diagonalizability of a matrix?

4. Products and Sums of eigenvalues

Let A be an n× n matrix with eigenvalues λ1, . . . , λn (maybe not all distinct).

(a) (6.1 #16) Show that the determinant of A is the product of eigenvalues. i.e., det(A) = λ1λ2 · · ·λn.
Hint: Start with the polynomial det(A− λI) factored as follows:

det(A− λI) = (λ− λ1)(λ− λ2) · · · (λ− λn).
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(b) (6.1 #17) Show that the sum of the eigenvalues of a 2× 2 matrix A is the trace of A by which we
mean the sum of the diagonal entries of A.

Hint: If A =

[
a b
c d

]
, then trace(A) = a+ d and det(A− λI) = λ2 − (a+ d)λ+ ad− bc.

** (You do not need to write up an answer to this part) The trace of any n× n matrix A is the
sum of its eigenvalues. Test this on the 3×3 matrix from (1) and think about why it’s true there.
Why is this true in general for all n× n matrices?

5. Rotation Matrices

(a) (6.1 #14) Argue that counterclockwise rotation by θ degrees in R2 is modeled by the linear
transformation with matrix:

Q =

[
cos θ − sin θ
sin θ cos θ

]
.

Compute the diagonalization of Q. (Recall that i2 = −1.)

(b) (6.2 #34):

i. Argue that the matrix for rotation by nθ is given by Qn.

ii. Compute Qn using the diagonalization of Q and show that

Qn =

[
cosnθ − sinnθ
sinnθ cosnθ

]
.

The following formulae may help:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i

6. Permutation Matrices

(6.1 #34) A permutation of 1, 2, 3, . . . , n is a reordering of the n numbers. For example (1324) is a
permutation of 1, 2, 3, 4 in which 1 goes to position 3, 3 goes to position 2, 2 goes to position 4 and 4
goes to position 1. The notation is 1 7→ 3, 2 7→ 4, 3 7→ 2, 4 7→ 1.

There are 2 = 2! permutations of 1 and 2: (1, 2) and (2, 1). There are 6 = 3! permutations of 1, 2, 3:
(123), (132), (12)(3), (13)(2), (23)(1), (1)(2)(3). There are 24 = 4! permutations of 1, 2, 3, 4 etc

Consider the following permutation matrix:

P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


Let’s examine where the name of P comes from and the eigenvalues and eigenvectors of P .

(a) What is the effect of multiplying the vector x = (1, 2, 3, 4) by the matrix P , i.e., what is Px? Do
you see why P is called a permutation matrix?

(b) Write down the permutation matrix that sends 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 4.
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(c) Compute all eigenvalues of P .

(d) For each eigenvalue use geometry and your understanding of permutations to find a corresponding
eigenvector. You shouldn’t have to do tedious computations.

7. * Fun with polynomials and linear maps. The following problems are unrelated unless it is
mentioned.

(a) Give an example of a linear map T : R2 → R2 such that Range(T ) =Ker(T ) or explain why no
such example exists.
(Hint: Pick your favorite subspace of R2 that will work and construct the matrix to have kernel
and range equal to that subspace.)

(b) Give an example of a linear map T : R3 → R3 such that Range(T ) =Ker(T ) or explain why no
such example exists.

(c) Consider the differentiation map D : R[x]3 → R[x]2 given by D(p(x)) = p′(x). Find a basis of
R[x]3 and R[x]2 such that the matrix of D with respect to these bases is1 0 0 0

0 1 0 0
0 0 1 0


and be sure to explain why the sets you have chosen are bases.

(d) Recall that R[x] is the (infinite-dimensional) vector space consisting of all polynomials of all
degrees. It contains each R[x]n as a subspace. Given any p ∈ R[x], use linear algebra to argue
that there exists a polynomial q ∈ R[x] such that

5q′′ + 3q′ = p

An answer that uses integration does not count!
Hint: This question is most easily answered by showing that a certain linear transformation
T : R[x] → R[x] is onto. To take this approach, you need to make sense of what an onto linear
map between infinite dimensional vector spaces is.
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Chapter 9

Positive Matrices and much much
more

In this chapter we will see a new class of matrices and encounter a theorem that is extremely useful in applied
settings. We then look at applications of this theorem, ending with an introduction to adjacency matrices
of graphs and the Google page rank algorithm.

9.1 Difference Equations

We can define the Fibonacci sequence recursively as follows. Let Fi denote the ith Fibonacci number, and
define

F0 = 0, F1 = 1, F2 = 1, Fk+2 = Fk+1 + Fk

This recursive definition let’s us enumerate any Fibonacci number we want

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 33, F10 = 54, . . .

We can see the numbers get relatively large relatively quickly. Now suppose, we wanted to easily find F100.
This would take a bit of time by hand, but we will soon see that linear algebra makes this incredibly easy.
Let’s introduce the close cousin of the Fibonacci sequence first, namely, the golden ratio.

Definition 9.1.1. The golden ratio, denoted by the greek letter φ, is defined to be φ = 1+
√

5
2 . It is also a

root of the quadratic polynomial x2 − x− 1 = 0.

The golden ratio came about from the idea of trying to draw the “perfect” rectangle, that is, a rectangle
that was the most pleasing to the human eye. It appears everywhere in nature and is intimately related to
the Fibonacci sequence.

Example 9.1.2. Let’s stop doing linear algebra for a moment and suppose we were a plant. One that grows
up and has leaves coming off of its main stem. How would we grow more and more leaves and ensure that
the leaf spacing maximized sunlight on the surface of our leaves? We could start with leaf 1, and then rotate
halfway around the stem to let leaf 2 grow there. That is, leaf 2 is a rotation of 1

2 units around the stem
from leaf 1.
Next, we would want leaf 3 to be positioned so it does not block too much sunlight from leaves 1 and 2. If
we drew a picture and though about it for a bit, we would end up rotating 3

5 units away from leaf 2. How
about leaf 4? We would rotate this one 5

8 units from leaf 3. Assuming the plant was immortal, we would
continue this process indefinitely, with a new spacing for each leaf.
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Question 9.1.3. What would this angle eventually tend to?

If we write it out we see that the we obtain a sequence of fractions 1
2 ,

3
5 ,

5
8 , . . . ,

Fk
Fk+1

and the limit of this

sequence as k tends to infinity is

lim
k→∞

Fk
Fk+1

= φ

That is, the limit of successive ratios of Fibonacci numbers tends to the golden ratio! For those who are
amazed and wondering why, linear algebra can be used to compute this limit and is left as an optional exercise.

Now let’s try to find F100. Let uk =

[
Fk+1

Fk

]
and uk+1 =

[
Fk+2

Fk+1

]
. Can we find a matrix that eats two

successive Fibonacci numbers and outputs the next one? That is, can we find a 2 × 2 matrix, A such that
Auk = uk+1? Sure we can! Using the recursive definition of Fibonacci numbers we find that our matrix is[
1 1
1 0

]
and we can check that

[
1 1
1 0

]
uk =

[
1 1
1 0

] [
Fk+1

Fk

]
=

[
Fk+1 + Fk
Fk+1

]
=

[
Fk+2

Fk+1

]
= uk+1

Now lets start this process with u0 =

[
1
0

]
. We know that Au0 = u1 and applying A to both sides of this

equation we see that
u2 = Au1 = A(Au0) = A2u0

Applying the same idea for arbitrary powers we see that uk = Aku0 hence u100 = A100u0, so it remains to
compute A100. We do this easily if A is diagonalizable.

We find the eigenvalues of our Fibonacci matrix by computing

det(A− λI) =

[
1λ 1
1 −λ

]
= −λ(1− λ)− 1 = λ2 − λ− 1 = 0

Do we remember what the roots of this are?!? We have eigenvalues being λ1 = 1+
√

5
2 = φ and λ2 = 1−

√
5

2 . If
we weren’t yet convinced of the relationship between the Fibonacci numbers and the golden ratio, we should
be sufficiently amazed now.

We find the eigenvectors by finding bases for our respective null spaces (eigenspaces) and get that the

eigenvector corresponding to eigenvalue λ1 is x1 =

[
λ1

1

]
and likewise for λ2 we get x2 =

[
λ2

1

]
. This

information allows us to diagonalize A and write A = XΛX−1. This means that

uk = Aku0 = XΛkX−1u0

At this stage, computing F100 seems reasonable, but still requires some matrix computation, in addition to
taking large powers of Λ, so let’s try and do better and get a closed form for the kth Fibonacci number,
purely in terms of these eigenvalues. We do so by carefully looking at what happens in a more general setting.

General Setting: The general phenomenon that is occuring is that we have a matrix A ∈ Rn×n which

maps our initial state vector u0 to the kth state vector, uk via Aku0 = uk. Assuming that A is diagonal-
izable, we have that uk = Aku0 = XΛkX−1u0 and express uk in terms of our eigenbasis in the following way.
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Set c = X−1u0 where X =
[
x1 x2 · · · xn

]
and c =


c1
c2
...
cn

. Note that you find the vector c by solving

the system
[
X|u0

]
.

Next, for this vector c, we have

uk = XΛkc =
[
x1 x2 · · · xn

]

λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn



c1
c2
...
cn



=
[
x1 x2 · · · xn

]

λk1c1
λk2c2

...
λkncn

 = c1λ
k
1x1 + c1λ

k
2x2 + · · ·+ cnλ

k
nxn

It is worth noting that two important things just happened. First, we found a nice unform way to express
the kth state vector as a linear combination of our eigenbasis vectors xi. Second, we used a fundamental fact
regarding matrix multiplication in terms of its columns.

Matrix multiplication in terms of matrix columns

Let A =
[
a1 a2 · · · an

]
∈ Rn×n and x =


x1

x2

...
xn

. Then Ax = x1a1 + x2a2 + · · · + xnan. This

allows us to easily see that Range(T ) = Col(A), and furthermore, that every element of
Col(A) is of the form Ax for some x. It is a worthwile use of your time to convince yourself of
these facts.

We now summarize the whole section thus far in a proposition.

Proposition 9.1.4. Let u0 denote an initial state vector and let A ∈ Rn×n satisfy uk = Aku0. If A is
diagonalizable, with eigenvalues λi and eigenbasis given by {x1, . . . ,xn} then

uk = Σni=1ciλ
k
i xi = c1λ

k
1x1 + c2λ

k
2x2 + · · ·+ cnλ

k
nxn

where c =


c1
c2
...
cn

 satisfies the linear system X−1u0 = c with X =
[
x1 x2 · · · xn

]
.

Now let’s return to the main task of computing F100. If we were to solve the linear system X−1u0 = c,
we would see that

c =

[ 1
λ1−λ2−1
λ1−λ2

]
hence

u0 =

[
1
0

]
=

1

λ1 − λ2︸ ︷︷ ︸
c1

[
λ1

1

]
︸ ︷︷ ︸
x1

− 1

λ1 − λ2︸ ︷︷ ︸
c2

[
λ2

1

]
︸ ︷︷ ︸
x2
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therefore

uk =
1

λ1 − λ2
λk1

[
λ1

1

]
− 1

λ1 − λ2
λk2

[
λ2

1

]
To obtain Fk, we take the second coordinate of uk =

[
Fk+1

Fk

]
, which we can see from the above equation is

Fk =
λk1 − λk2
λ1 − λ2

What happens as k tend to infinity? We would need to compute limk→∞ uk = limk→∞ c1λ
k
1x1 + c1λ

k
2x2

Notice that λ2 = −0.618, so −1 < λ2 < 0 and limk→∞ λk2 = 0. This means that

lim
k→∞

c1λ
k
1x1 + c1λ

k
2x2 = lim

k→∞
c1λ

k
1x1

and we can conclude that Fk ∼ λk1
λ1−λ2

= 1√
5

(
1+
√

5
2

)k
.

While this is a sort of phenomenon in itself, the key to determining the limiting behavior was that the
second eigenvalue tended to 0 as k got large. This is the central idea surrounding positive matrices and the
main focus of our attention in the next section.

9.2 Positive Matrices

We got a hint of the phenomenon that is occuring but we need some more examples before really seeing how
it works.

Example 9.2.1. Suppose we own a rental car agency in Seattle. The agency has cars in Seattle as well as
cars that have been rented and returned to other locations outside of Seattle. The current stats are

• Fraction of rental cars in Seattle at the start: 0.02

• Fraction of rental cars outside Seattle at the start: 0.98

• Every month 20% of Seattle cars leave and 5% of outside cars come in.

Question 9.2.2. What fraction of rental cars are in Seattle in the long run?

Step 1: Begin with an initial state vector whose first coordinate is the fraction of cars in Seattle and

second coordinate is the fraction of cars outside Seattle, that is u0 =

[
0.02
0.98

]
.

Step 2: Determine u1. Since 20% of cars leave every month and 5% come back in, we know that after
one month the fraction of cars in Seattle is

(.8)(0.02) + (0.05)(.98)

and the fraction of cars outside Seattle is

(.2)(.02) + (.95)(.98)

Step 3: Write u1 in terms of this information.

u1 =

[
(.8)(0.02) + (0.05)(.98)
(.2)(.02) + (.95)(.98)

]
=

[
.8 .05
.2 .95

]
︸ ︷︷ ︸

A

[
.02
.98

]
︸ ︷︷ ︸

u0
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Step 4: Using the same reasoning from the Fibonacci example, we can conclude that at the end of month

k, our kth state vector is uk = Aku0. In computing arbitrary powers of A, we use diagonalization as our
tool and find that the eigenvalues and eigenvectors are

λ1 = 1,x1 =

[
.2
.8

]
λ2 = 0.75,x2 =

[
−1
1

]
Applying proposition 9.1.4, we get

u0 = 1

[
.2
.8

]
+ .18

[
−1
1

]
hence

uk = (1)(1k)

[
.2
.8

]
+ (.18)(.75)k

[
−1
1

]
︸ ︷︷ ︸
→0 as k→∞

We then conclude that the limiting behavior is limk→∞ uk =

[
.2
.8

]
, that is, the limiting behavior tended

towards the eigenvector associated to the largest eigenvalue. We conclude that in the long run, 20% of cars
end up in Seattle.

Is this a general phenomenon? Does the biggest eigenvalue always determine the limiting behavior? Is
the biggest eigenvalue always 1, with all other eigenvalues being smaller in absolute value? The emphatic
answer is YES!

Definition 9.2.3. Let A = (aij) ∈ Rm×n.

• A is a positive matrix, denoted A > 0, if aij > 0 for all i, j.

• A is a non-negative matrix, denoted A ≥ 0 if aij ≥ 0 for all i, j.

• A is Markov (also known as stochastic) if the entries in each column add up to 1. That is, if

m∑
i=1

aij = 1 ∀j

• A is a positive Markov matrix if aij > 0 ∀i, j and
∑m
i=1 aij = 1 ∀j.

Note that the matrix

[
.8 .05
.2 .95

]
of the previous example is positive Markov. The following theorem

explains the phenomenon that we have now seen several times. The ideal hypothesis is that our matrix is
positive Markov, but dropping the Markov assumption still yields powerful results.

Theorem 9.2.4. (Perron-Frobenius for positive matrices) If A > 0 then A has a dominant eigenvalue
λA with the following properties:

1. λA > 0 and its associated eigenvector xA > 0 (has all positive entries).

2. AM(λA) = 1

3. If µ is another eigenvalue of A, then |µ| < λA.

4. A has no other eigenvectors with non-negative entries
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The proof of this theorem involves the notion of compactness, which is not a part of this course. For the
interested reader, on can find a proof in the book Numerical Linear Algebra by Lloyd Trefethen and David
Bau. The results that we will be using the most will be for positive Markov matrices. To prove these results
we will assume all results of theorem 9.2.4 without proof. Adding the Markov assumption to the hypothesis
of the previous theorem greatly strengthens our result.

Theorem 9.2.5. (Perron-Frobenius for positive Markov matrices) If A is positive Markov then A
has a dominant eigenvalue λA with the following properties:

1. λA = 1.

2. If µ is another eigenvalue of A, then |µ| < 1.

3. If u0 ≥ 0, then limk→∞Aku0 = cxA where c ≥ 0.

Proof. Recall (from the previous problem set) that A and A> have the same eigenvalues. Since the column

entries of A sum to 1, the row entries of A> sum to 1. Let 1 =


1
1
...
1

. Since the row entries of A> sum to 1,

this implies that

A>1 = A>


1
1
...
1

 =


1
1
...
1


hence 1 is an eigenvalue of A> with eigenvector 1. This implies that the dominant eigenvalue of A>, λA> ,
is 1 by part 4 of theorem 9.2.4. This in turn, tells us that λA = 1. Note that we are implicitly using the fact
that A> is positive.
The second statement of the theorem follows immediately from theorem 9.2.4.
To prove the third statement, we assume for simplicity that A is diagonalizable. In general this is not always
the case but the extent of cases that we see will only involve this case. If A = XΛX−1 then by proposition
9.1.4 we know that

uk = Σni=1ciλ
k
i xi = c1(1)kxA + c2λ

k
2x2 + · · ·+ cnλ

k
nxn

The previous statement implies that |λi| < 1 for all i = 2, 3, . . . , n hence limk→∞ λki = 0 for all non-dominant
eigenvalues. From this we can conclude that

lim
k→∞

uk = lim
k→∞

c1(1)kxA + c2λ
k
2x2 + · · ·+ cnλ

k
nxn︸ ︷︷ ︸

→0 as k→∞

= c1xA

Warning: If A is non-negative, the Perron-Frobenius theorem, as written, is false. Witness the counterex-

ample A =

[
0 1
1 0

]
. We have λ1 = 1 but λ2 = −1.

The proof of the first statement contains a method that we shouldn’t forget. In general, when trying to
argue that a given matrix is Markov, we almost never want to look at the individual matrix entries and work
up from there. Instead, we’ll want to use something a little more slick.
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Alternative Definition of Markov

Let 1 denote the vector of all 1’s. If we transpose both sides of the equation A>1 = 1 using the
fact that (AB)> = B>A> we get that 1>A = 1>. Note that multiplying a matrix on the left by a
row vector is defined. You should check this for yourself. We then have the alternative definition of
Markov given by

A is Markov ⇔ 1>A = 1>

Even though Perron-Frobenius fails for non-negative Markov matrices, not all hope is lost.

Proposition 9.2.6. If A ≥ 0 but Ak is positive Markov, then 1 is still the unique dominant eigenvalue of
A with |µ| < 1 for all other eigenvalues µ.

Proof. If µ is an eigenvalue of A, then µk is an eigenvalue of Ak. Ak is a positive Markov matrix, hence by
theorem 9.2.5 1 is its dominant eigenvalue. This means that 1 = λk for some eigenvalue λ of A, and |µk| < 1
for all other eigenvalues µ, thus λA = 1 and |µ| < 1 for all other eigenvalues µ.

This last proposition can be useful in determining limiting behavior of certain systems.

Example 9.2.7. Suppose we have three groups with populations p1, p2, p3 respectively and further assume
that after each week, each group splits in half and joins the others. This behavior can be modeled by a

non-negative Markov matrix. Let u0 =

p1

p2

p3

, then after one month we have

u1 = Au0 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


︸ ︷︷ ︸

Markov and non-negative

p1

p2

p3



Moreover,

u2 = A2u0 =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2


︸ ︷︷ ︸

positive Markov

p1

p2

p3



Computing eigenvalues and eigenvectors we see that λA = 1 with xA =

1/2
1/3
1/3

 and λ2 = λ3 = −1/2. By

Perron-Frobenius, the limiting behavior will approach xA and in the long run, all populations will have the
same size.
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9.3 Applications: Adjacency Matrices and Google Page Rank

A graph G is a collection of nodes or vertices, labeled 1, 2, . . . , n and edges which are represented by a
pair of nodes {i, j} namely the node that the given edge connects. An example of a graph looks like

1 2 3

Graphs are sometimes written as G = (E, V ) where E is the set of edges and V is the set of vertices. Our
example graph above would be written as G = ({1, 2}, {2, 3}, 1, 2, 3). To any graph G we can associate a
matrix AG, known as the adjacency matrix of G.

Definition 9.3.1. The adjacency matrix AG of a graph G with n nodes is a n × n matrix defined as
follows. The rows and columns of A are indexed by the node labels 1, . . . , n and the (i, j)-entry of A is 1 if
the pair {i, j} is an edge in G and 0 otherwise. That is AG = (aij) where

aij =

{
1 there exists an edge from i to j

0 otherwise

The adjacency matrix for the graph G from above would be

AG =

0 1 0
1 0 1
0 1 0


Notice that this matrix is non-negative. We can say a few things about it thanks to yet another version of
Perron-Frobenius, this one only attributed to Frobenius (1912).

Proposition 9.3.2. If A ≥ 0 then A has an eigenvalue λA such that

1. λA ≥ 0 with eigenvector(s) xA ≥ 0.

2. If µ is another eigenvalue of A then |µ| ≤ λA.

Note that if λA is not positive, then AM(λA) is not necessarily 1. This is witnessed by the counterexample

A =

[
0 1
0 0

]
which has a λA = 0 and AM(λA) = 2.

Computing the eigenvalues and eigenvectors of AG, we get

λ1 =
√

2 x1 =

√2
2√
2

 , λ2 = 0 x2 =

 1
0
−1

 , λ3 = −
√

2 x3 =

√2
−2√

2


Note that here, in the non-negative case, we have another eigenvalue µ such that |µ| = λAG . You may also
have notice that in addition to being non-negative, AG is also Markov. We can combine part of the proof of
theorem 9.2.5 to obtain the following corollary.

Corollary 9.3.3. If A is non-negative and Markov, then λA = 1 and xA ≥ 0.

Over the coming weeks we will be looking at lots of graphs and adjacency matrices but we leave further
investigation to problem set 2 and later lectures. We finish this section with a powerful application of what
we have learned in this chapter.
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9.3.1 Google Page Rank

The Google page rank algorithm was first discovered by Larry Page and Sergey Brin in 1998. The central
idea is to decide the “rank” or “importance” of a webpage by the importance of pages that link to it. When
we submit a query, we want to see the most relevant pages at the top of the list, so a useful measurement of
importance is needed.
This is where a graph comes into the picture. The world wide web can be thought of as a directed graph or
network, with nodes indicating webpages and edges indicating links from one page to another. An example
network with 6 webpages and links could look like

4 5

2 3

1

6

From this network we construct a Page rank matrix by modeling movement between pages via a 6 × 6
matrix of probabilities. We compute it according to the following rules:
When your browser is at page i, you have two choices

1. Teleportation: Go directly to a different page by typing the webpage directly into the browser

2. Follow a link.

If you teleport, assume all pages are equally likely to move to.

If you follow a link, assume all links are equally likely.

The ij entry of the page rank matrix is then the probability of going from j to i.

Let’s roll a die that predetermines wether we link or teleport, this will come into play when computing
our matrix entries.

• If we roll 1, 2, 3, 4, or 5, then we link with equal probability.

• If we roll a 6, then we teleport

Lets focus on column 1 of this matrix. The entries are ai1 for i = 1, 2, 3, 4, 5, 6. Remember, to compute
aij we only focus on going from j to i. We use the example network at each step.

• a11: We can only teleport from 1 to 1 with no linking possible. We have a 1/6 chance of rolling a
6 and a 1/6 chance of teleporting to 1 out of the 6 possible webpages. The total probability is then
(1/6)(1/6) = 1/36.
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• a21: Similarly to the previous case, we have a 1/6 chance of teleporting from 1 to 2. Selecting 2 out
of 6 possibilities means that the total probability that we teleport from 1 to 2 is (1/6)(1/6) = 1/36.
Note that while we have a 5/6 chance of linking (i.e. rolling anything but a 6), there is no link from
1 to 2 in our network. At the beginning we could either link or teleport, so adding these probabilities
we get that a21 = (1/6)(1/6) + (5/6)(0) = 1/36.

• a31: This is the same as above

• a41: This is the only computation that is different because there is a link from 1 to 4. We have a
1/6 chance of rolling a 6 so the teleportation probability is still 1/36 as usual. We have a 5/6 chance
of rolling anything other than a 6, and a 1/1 chance of linking from 1 to 4. Note that if 1 had k
outgoing edges, then the chance of linking would then be 1/k. This gives the total linking probability
as a41 = (1/6)(1/6) + (5/6)(1) = 31/36.

• a51: This is the same as a21.

• a61: This is the same as a21.

Summarizing, the first column of our page rank matrix is


1/36
1/36
1/36
31/36
1/36
1/36

. As practice, you should fill out the

rest of the google page rank matrix and check your answer with the one below. Before giving the full matrix,
we make several key observations about this procedure and the resulting matrix that we obtain. This is
where Perron-Frobenius comes to the rescue!

Important Facts

• Teleportation guarantees that our matrix will be positive since every entry will have at least 1/36.

• Since the entries are probabilities, we will be certain that the resulting matrix will be Markov. Hint:
This is how you will compute column 6. It also provides many shortcuts in computing the columns of
page rank matrices.

• We assume all pages are equally likely at the beginning, so our initial state vector, whose entries rank

the importance of each webpage at time 0, is u0 =


1/6
1/6
1/6
1/6
1/6
1/6

.

• The importance transfers to u1 = Pu0 and uk = P ku0 where P is the page rank matrix. Therefore,
by theorem 9.2.5, we have limk→∞ uk = c1(1k)xP . That is, the importance of webpages, in the long
run, is determined by the dominant eigenvector. Since this system limits to a multiple of it, we must
normalize xP for it to accurately represent a probability vector.

Definition 9.3.4. We call xP the page rank vector. It is the dominant eigenvector of the page rank
matrix and is always taken to be normalized in the sense that the entries sum to 1.
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In finishing out the computation, we obtain

P =


1/36 31/36 31/36 1/36 1/36 6/36
1/36 1/36 1/36 11/36 1/36 6/36
1/36 1/36 1/36 11/36 16/36 6/36
31/36 1/36 1/36 1/36 1/36 6/36
1/36 1/36 1/36 11/36 1/36 6/36
1/36 1/36 1/36 1/36 16/36 6/36


We use Julia to compute the page rank vector of the example network and we obtain

xP =


0.599066
0.253028
0.358456
.588717
0.253028
0.194924


Notice that this is not yet normalized, but ignoring the scaling factor, we can see that the first entry

has the highest “rank” and the fourth entry has second highest “rank”. We then conclude that the most
important webpage in our network is webpage 1, and the second most important is webpage 4.

9.4 Problem Set 2

1. (6.2 #9) Suppose a sequence {Gk} is defined as Gk+2 = 1
2Gk+1 + 1

2Gk.

(a) Find the matrix A such that [
Gk+2

Gk+1

]
= A

[
Gk+1

Gk

]
.

(b) Find the eigenvalues and eigenvectors of A.

(c) Find the limit as n→∞ of the matrices An.

(d) If G0 = 0 and G1 = 1 show that Gn approaches 2
3 as n→∞.

2. (6.2 #15,#16) Consider the matrices

A1 =

[
.6 .9
.4 .1

]
and A2 =

[
.6 .9
.1 .6

]
.

Which of these matrices have the property that Ak approaches the zero matrix as k →∞? Why does
this happen?

The following questions are all about A1.

(a) Diagonalize A1 as A1 = XΛX−1.

(b) What is the limit of Λk as k →∞?

(c) What is the limit of Ak1 as k →∞? What do you see in the columns of this limiting matrix?

3. (6.2 #20, #21)
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(a) Suppose A ∈ Rn is diagonalizable and show that det(A) = λ1λ2 · · ·λn. Note: You already
showed this last week but this is here for you to realize that the diagonalizability assumption
makes the problem considerably easier to show.

(b) Show that trace(PQ) = trace(QP ) for any two n× n matrices P and Q. You might ramp up by
first checking it for two 2× 2 matrices, then 3× 3 and so on.

(c) Whether you can do (b) or not, use the result to show that if A is diagonalizable, then the trace
of A is the sum of the eigenvalues of A.

4. (6.2 #25) Recall that the column space of a n×n matrix A, denoted Col(A), is the span of the columns
of A. Suppose A is a n× n non-zero matrix such that A2 = A.

(a) Show that λ = 1 is an eigenvalue of A with eigenspace equal to Col(A).

(b) What is the eigenspace of λ = 1 if A is invertible? Is A diagonalizable in this case? If yes, write
its diagonalization.

(c) If A is not invertible, what are its eigenvalues and their eigenspaces? Is A diagonalizable in this
case? If yes, write its diagonalization. Note: If you can write it’s diagonalization, it will not be
with explicit vectors, but rather a general diagonalization in terms of vectors coming from the
various eigenspaces that you have found.

5. (6.2 #24, #29)

(a) Consider the set of all 4× 4 matrices that are diagonalized by the same eigenvector matrix X:

SX =
{
XΛX−1 ∈ R4×4 : Λ is a diagonal matrix

}
.

Show that S is a subspace of R4×4. (Check the properties of a subspace.)

(b) What is SI where I is the identity matrix?

(c) Suppose the same X diagonalizes A and B, i.e., A = XΛ1X
−1 and B = XΛ2X

−1. Argue that
AB = BA. (Recall that in general matrix multiplication is not commutative, i.e., AB 6= BA.)

6. (6.2 #38) Recall that a matrix A is similar to a matrix C if there is an invertible matrix B such that
A = BCB−1. Also, we saw in class that similar matrices have the same eigenvalues. Suppose Λ is
the diagonal matrix with the eigenvalues of A on its diagonal. Are A and Λ always similar? If yes,
say why. If not, provide an example in which they are not similar and explain what happened. Under
what conditions are A and Λ similar?

7. * How to find a triangle in a graph. A graph G is a collection of nodes labeled 1, 2, . . . , n and
edges which are pairs of nodes. Shown below is a graph with 5 nodes labeled 1, . . . , 5 and edges
{1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}. A triangle in a graph G is a triple of nodes i, j, k such that
all edges {i, j}, {i, k}, {j, k} are present in G. For example 3, 4, 5 forms a triangle in the graph below.
Two nodes i and j are neighbors in G if {i, j} is an edge in G.

1

2

3

4

5
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If the graph G is very large it becomes hard to decide if there is a triangle in it by simply looking at
the graph. In this problem we will see that linear algebra can be used to decide if a graph contains a
triangle.

(a) The adjacency matrix A of a graph G with n nodes is a n×n matrix defined as follows. The rows
and columns of A are indexed by the node labels 1, . . . , n and the (i, j)-entry of A is 1 if the pair
{i, j} is an edge in G and 0 otherwise. An example can be seen in Problem 2.4A on page 76 in
Strang’s book. Write down the adjacency matrix of the graph G shown above.

(b) Let B = A2 where A is the adjacency matrix of G. The entry bij in B is the dot product of two
vectors sitting in A. Which vectors are they? In our example, how is b23 formed?

(c) For three nodes i, j, k from G, argue that aikakj is 1 exactly when k is a common neighbor of i
and j.

(d) Using the above, what does bij count?

(e) The nodes i, j, k form a triangle if and only if i and j are neighbors and k is a common neighbor
of i and j. If i, j, k is a triangle what property must aij and bij have?

(f) Putting all this together can you construct an algorithm that takes as input two indices i, j, and
determines whether or not there exists a triangle with the edge between i and j as one of the
sides . Justify your algorithm. Your algorithm MUST use both A and B. An algorithm
that only uses A is not efficient! You can write an informal algorithm if you’re not familiar
with programming. Just writing the steps out is fine.

(g) Use your algorithm to find the triangles in the example graph shown above.

(h) (optional) If you know about running times of algorithms, do you see how fast this algorithm
runs? Is it faster than checking all triples of nodes in G?

8. (10.3 #5) Every year 2% of young people become old and 3% of old people die. There are no births.
Without doing any math, what do you think happens in the long run to these people? Check that the
difference equation for this population isyoung

old
dead


k+1

=

0.98 0 0
0.02 0.97 0

0 0.03 1

young
old

dead


k

.

Confirm your suspicion by computing the limit of uk as k goes to infinity.

9. (10.3 #11) Complete the following to a Markov matrix.7 .1 .2
.1 .6 .3
− − −


so that (1, 1, 1) is the dominant eigenvector. What is the dominant eigenvalue? Write down the general
principle that you are using and explain why it is true.

10. (10.3 #6 and #9)
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(a) Suppose A is a 2 × 2 Markov matrix and u ∈ R2 is a nonnegative vector (u 6= 0) whose entries
add to α. Argue that Au is a nonnegative vector whose entries add to α.
Hint: Let 1 be the column vector with all entries equal to 1. Think of 1 as a n×1 matrix. What
are 1>A, 1>u and 1>Au?

(b) Using the above argue that all powers of A are Markov. Check A2 first.
Hint: What should be the value of α that can help you here?

(c) Suppose Au = λu where λ 6= 1. Then what must α be? Illustrate on a 2 × 2 Markov matrix of
your choice.

(d) Do you expect these results to hold if we replace A ∈ R2×2 with A ∈ Rn×n and u ∈ R2 with
u ∈ Rn? Explain your answer.

11. Compute the page rank of the 5 webpages you see in the following network. An arrow from i to j
indicates that page i contains a link to page j. Use the rule that when you are at a webpage you
will teleport with probability 1

2 and follow a link with probability 1
2 . Assume that all links from

a page have equal probability of being followed. You can also assume that you will teleport to
any of the vertices in the network with equal probability as we assumed in class. (You will want
to use a software package for this.)

4 5

2 3

1

12. (4.1, #4, #30) Recall from class that for any vector x, Ax is a linear combination of the columns of A
and for any vector y, y>A is a linear combination of the rows of A. Check this if you are not convinced.

(a) Let A and B be two matrices such that AB is defined. What is the relationship between

i. column space of AB and column space of A?

ii. row space of AB and rowspace of B?

iii. Using (i) and (ii) argue that rank(AB) ≤ min{rank(A), rank(B)}.
iv. How can you use (iii) to see that if the columns of a matrix A ∈ Rn×k are not linearly

independent, then A>A cannot be inverted? In class we showed the converse statement,
namely, if the columns of A are linearly independent then A>A is invertible.

(b) Now suppose AB = 0. What is the relationship between

i. Null(A) and Col(B)?

ii. (Col(B))⊥ and Row(A)?

(c) If AB = 0, can A and B be 3× 3 matrices of rank 2?

(d) Suppose A ∈ R3×4 and B ∈ R4×5 and AB = 0. Argue that rank(A) + rank(B) ≤ 4.
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13. *How to limit clubs in your community. Suppose there are n people in your community and the
community leaders are feeling overwhelmed by the number of different clubs that are getting formed
(for which they need to fund cookies and drinks each week). The leaders devise the following rules to
limit the number of clubs that can be formed:

(a) Each club has to have an odd number of members.

(b) Every two clubs must have an even number of members in common.

Let’s use linear algebra to argue that no more than n clubs can be formed under these rules. Make
a small example that you can keep using as you do the various parts of this question.
Always do small examples! Examples are very enlightening.

(a) Let’s call the members of the community 1, 2, . . . , n and the clubs C1, . . . , Cm. Form the m × n
matrix with rows indexed by clubs and columns by people as follows:

aij =

{
1 if person j is in club Ci
0 otherwise

Write an inequality that relates rank(A) and n.

(b) Now compute AA> which is an m ×m matrix. Argue that the (i, k) entry of AA> counts the
number of people common to both club Ci and club Ck. In particular, the (i, i) entry counts the
number of people in Ci.

(c) Next we replace all the odd numbers you see in AA> with 1 and all the even numbers with 0. (In
mathematical language we are working in the field F2 with two elements 0 and 1 where 1 + 1 = 0.
Or equivalently, we are computing mod 2. Don’t worry if haven’t seen this before.) After you
have made these replacements, what is AA> given the rules on clubs? What is rank(AA>)? (Note
that this is meant to be the rank of AA> as a matrix with real number entries, not entries in the
field F2. If this note confuses you then you can safely ignore it)

(d) Using the result of probem 5 (a) iii), and the previous step, argue that m ≤ n. In other words
your community of n people cannot form more than n clubs under the rules.
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Chapter 10

Orthogonality and Projections

This chapter marks the beginning of our mach towards the singular value decomposition of a matrix. We
will need all the linear algebra we have to understand how it works, and that begins with the notion of
orthogonality. The reader shoudl consider everything from here onward as something they will use the rest
of the class.

10.1 Orthogonal Subspaces

We begin by introducing some notation.

Let v =

v1

...
vn

 ,w =

w1

...
wn

 ∈ Rn. We define the dot product of v and w to be

v>w = v1w1 + · · ·+ vnwn =

n∑
i=1

viwi

We use this notion to further define vector norms as follows. The norm of v is given by

||v|| =
√
v2

1 + · · ·+ v2
n =

√√√√ n∑
i=1

v2
i =
√

v>v

and the square norm or norm squared as

||v||2 = v>v

Definition 10.1.1. For any v,w ∈ Rn we say that v and w are orthogonal if v>w = 0 or equivalently, if
w>v = 0.

Using our new notation, we have a fun restatement of the Pythagorean theorem for Rn.

Theorem 10.1.2. If v>w = 0 then

||v||2 + ||w||2 = ||v−w||2 = ||v + w||2

Now that we have a notion of orthogonality amongst vectors, we can extrapolate and define the central
concept of this chapter, namely orthogonal subspaces.
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Definition 10.1.3. Let V and W be subspaces of Rn. V and W are orthoogonal, denoted V ⊥ W , if
every v ∈ V is orthogonal to every w ∈W .

We can visualize some orthogonal subspaces, and we can’t visualize some others. It will be important to
have something to think when we encounter the orthogonal subspaces in greater generality.

Examples you can see

Example 10.1.4. Let V = Span
{[1

0

]}
and W = Span

{[0
1

]}
.

We can see that these are orthogonal because every vector in V looks like

[
c
0

]
for some c ∈ R and any

vector in W looks like

[
d
0

]
for some d ∈ R. Taking the dot product of these arbitrary vectors is always zero,

hence V and W are orthogonal subspaces. This is also clear from the picture and this is the intuition that
we should always keep in mind.

In the previous example we orthogonal subspaces of equal dimension but this is not always the case.

Example 10.1.5. Let V = Span
{1

0
0

 ,
0

1
0

} and W = Span
{0

0
1

}.
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We can see that these are orthogonal because every vector in V looks like v =

ab
0

 for some a, b ∈ R and

any vector in W looks like w =

0
0
c

 for some c ∈ R. We can easily check that w>v = 0 so V and W are

orthogonal subspaces.

Examples you can’t see

Example 10.1.6. Let V = Span
{

1
0
0
0

 ,


0
0
1
0

} and W = Span
{

0
1
0
0

 ,


0
0
0
1

}. You should check, by similar

methods of the above example, that these are orthogonal subspaces.

For the last example, we illustrate orthogonal subspaces of a vector space that is not Rn.

Example 10.1.7. Let V = {a3x
3 + a1x : a1, a3 ∈ R} and W = {a2x

2 + a0 : a0, a2 ∈ R}. Note that we have
V,W ∈ R[x]3. Using the association we have between vectors and polynomials, we can see that V and W are
the same subspaces of the previous example, hence are orthogonal by the same reason. We certainly have
no hope of obtaining a picture from either of these examples but we can still have a notion of orthogonality

Now that we have a feel for what orthogonal subspaces can look like, we can encounter the first (amazing)
proposition concerning orthogonality and matrices.

Proposition 10.1.8. Row(A) ⊥ Null(A) for any A ∈ Rm×n.

Proof. We begin by writing A in terms of its rows.

A =

a>1
...

a>m


If the new notation is unfamiliar, please reference the notation section at the beginning of the notes. Recall
that Row(A) = Span{a>1 , · · · ,a>m} and Null(A) = {x ∈ Rn : Ax = 0}.

Now, assume that x ∈ Null(A). We aim to show that a>i x = 0 for all i. By looking at the entries of Ax
using the rows of A we see that

Ax =

a>1
...

a>m

x =

a>1 x
...

a>mx

 =

0
...
0


Since two vectors are equal if and only if their entries are equal, we obtain the desired result. In other words,
every vector in Row(A) is orthogonal to every vector in Null(A).

There is another way of seeing why this proposition is true, and it involves another incredibly useful fact
which we can think of as the analog of the fact that Col(A) = {Ax : x ∈ Rn}.
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Alternative Definition of Row(A)

Row(A) = y>A : y ∈ Rm}

To see why this is true, think of Row(A) as all linear combinations of the rows of A. Write A =[
a1 · · · an

]
= (aij) and y> =

[
y1 · · · yn

]
, then

y>A = y>
[
a1 · · · an

]
=
[
y>a1 · · · y>an

]
=

y>


a11

a12

...
a1m

 · · · y>


an1

an2

...
anm




= y1

[
a11 a21 · · · an1

]
+ y2

[
a12 a22 · · · an2

]
+ · · · yn

[
a1m a2m · · · anm

]
This last object is a linear combination of the rows of A.

Now, we can see the alternative proof of proposition 10.1.8 by using this fact. If x ∈ Null(A), we just
need to compute the dot product of x with an arbitrary element of Row(A), and show that it is 0. Note that
being an element fo the row space means you are a row vector already, so there is no need to transpose.
Let r ∈ Row(A). Since every element of Row(A) looks like y>A for some vector y ∈ Rm, we have r = y>A
for some y. Then

(r)x = (y>A)x = y>(Ax) = y>(0) = 0

Now you may be wondering if there is a nice analog of this proposition for Col(A) and sure enough there
is! The key to seeing this fact is to notice that Col(A) = Row(A>) for any matrix A.

Proposition 10.1.9. Col(A) ⊥ Null(A>) for any matrix A ∈ Rn×m.

Proof. Let x ∈ Null(A>) and write A =
[
a1 · · · an

]
. Our goal is to show that x>ai = 0 for all columns

ai of A. By assumption, we have that A>x = 0. Transposing both sides of this equation yields x>A = 0>,
but

x>A = x>
[
a1 · · · an

]
=
[
x>a1 · · · x>an

]
=
[
0 · · · 0

]
This means that if x ∈ Null(A>) and a ∈ Col(A) then x>a = 0.

In practice, there are nice ways of checking that two subspaces are orthogonal. As with many reductions
in linear algebra, it is enough to veryfy that the basis vectors for the respective nullspaces are orthogonal.
We can easily illustrate why with an almost generalized example.

Example 10.1.10. Let V and W be subspaces with respective bases given by BV = {v1, · · · ,vn} and
BW = {w}. By the definition of basis, we know that any v ∈ V looks like

v− a1v1 + · · ·+ anvn

and similarly, any vector in W look like aw for some a ∈ R. Computing this dot product we get

w>v = a1w
>v1 + a2w

>v2 + · · ·+ anw>vn = 0⇔ w>vi = 0

for all i = 1, . . . , n. This means that any vectors in V and W are orthogonal if the bases for the respective
subspaces are orthogonal.

In some texts, these four subspaces associated to any matrix are called the four fundamental subspaces.
We are familiar with three of them and we call Null(A>) the left nullspace of A.
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Example 10.1.11. Let A =

[
1 2 3
−1 0 2

]
. We have Row(A) = Span

{1
2
3

 ,
−1

0
2

}. Before computing the

Null space, we know by rank-nullity that it must be one-dimensional. Carrying out the usual computation

we get that Null(A) = Span
{ 2
−5/2

1

}. Computing the dot product of

 2
−5/2

1

 with

1
2
3

 and

−1
0
2


respectively, we see that we get 0 in both cases, verifying that Row(A) ⊥ Null(A).

10.2 Orthogonal complements

The first two examples of this section provided scenarios where we had orthogonal subspaces of equal and
different dimensions. In addition to having these properties, we also had that the sum of their respective
dimensions was equal to the dimension of the ambient space, R2 and R3 respectively. This was a nice
coincidence but we could have also used the following example.

Example 10.2.1. Let V = Span
{1

0
0

} and W = Span
{0

0
1

}.

In this example, the dimensions did not add up to 3. These provide an example of orthogonal subspaces
that are not complementary. In contrast, complementary orthogonal subspaces allow us to decompose
our entire space into orthogonal chunks, and as a result, will be of central interest to us when discussing
orthogonality.

Definition 10.2.2. Let V be a subspace of Rn. The orthogonal complement of V , denoted V ⊥ is the
subspace of all vectors orthogonal to V . That is

V ⊥ = {y ∈ Rn : x>y = 0 ∀x ∈ V }

We have one giant example that encompasses this whole idea. The statement is short but packed with
information so taking some times to digest it will be time well spent.

Example 10.2.3.
Row(A)⊥ = Null(A)

Col(A)⊥ = Null(A>)

Looking back at example 10.1.11, we see that in addition to the subspaces being orthogonal, they are
also complementary. We dig deeper into this with a series of fundamental propositions and their proofs. In
each statement, we assume that V is a subspace of Rn
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Proposition 10.2.4. V ∩V ⊥ = {0}. That is, the only vector in common to any subspace and its orthogonal
complement is the zero subspace.

Proof. If x ∈ V ∩ V ⊥ and x 6= 0 then x>x = 0 which implies ||x|| = 0 hence x = 0.

Proposition 10.2.5. We can always find a matrix A ∈ Rn×n such that V ⊥ = Null(A), or equivalently, that
V = Row(A).

Proof. Let V = Span{a1, . . . ,ak} and consider the matrix A =

a>1
...

a>k

. It is immediate that V = Row(A)

hence V ⊥ = Null(A).

This proposition actually tells us that any pair of subspaces (V, V ⊥) is of the form (Row(A),Null(A)) for
some matrix A.

Proposition 10.2.6. dim(V ) + dim(V ⊥) = n

Proof. Suppose dim(V ) = r and let BV = {a1, . . . ,ar} be a basis for V . By the previous proposition we

know that V = Row(A) where A =

a>1
...

a>r

, rank(A) = r, and V ⊥ = Null(A). It then follows by rank-nullity

that dim(V ⊥) = dim(Null(A)) = n− r thus dim(V ) + dim(V ⊥) = r + n− r = n.

Proposition 10.2.7. If BV = {a1, . . . ,ar} is a basis for V and BV ⊥ = {a′1, . . . ,a′n−r} is a basis for V ⊥

then
B = BV ∪ BV ⊥ = {a1, . . . ,ar,a

′
1, . . . ,a

′
n−r}

is a basis for Rn.

Proof. We know that B has n elements, so we only need to show that they are linearly independent. Each
set separately is linearly independent because we assumed that BV and BV ⊥ were bases. We will now show
that none of the a′i are in V = Span{a1, . . . ,ar} by assuming that they are and arriving at a contradiction.

Given an arbitrary a′ ∈ V ⊥, assume that a′ ∈ V . Then there exist scalars c1, . . . , cr ∈ R such that

a′ = c1a1 + · · ·+ crar

Note that a′>ai = 0 for all i = 1, . . . , r by the assumption that a′ ∈ V ⊥. It follows that

||a′|| = a′>a′ = c1 a′>a1︸ ︷︷ ︸
=0

+c2 a′>a2︸ ︷︷ ︸
=0

+ · · ·+ cr a′>ar︸ ︷︷ ︸
=0

= 0

thus a′ = 0.

Proposition 10.2.8. Every a ∈ Rn can be written uniquely as

a = c1a1 + · · ·+ crar︸ ︷︷ ︸
aV

+ c′1a′1 + · · ·+ c′n−ra
′
n−r︸ ︷︷ ︸

a
V⊥

That is, every vector has the form a = aV + aV ⊥ where aV ∈ V and aV ⊥ ∈ V ⊥.

Proof. This follows immediately from the previous proposition.
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The notion of writing any vector as a sum of vectors from V and V ⊥ is an extremely useful tool for a
number of reasons. It is also useful to think about the picture that we can associate to this idea.

Warning: We may be inclined to think proposition 10.2.7 implies that any x ∈ Rn lives in either V or

V ⊥ but this is not the case. There is a fundamental difference in saying that x = aV + aV ⊥ versus saying
that x in V or V ⊥. The following example will help us never forget this.

Example 10.2.9. Let x =

1
1
1

 with V = Span
{1

0
0

 ,
0

1
0

} and V ⊥ = Span
{0

0
1

}. We can write

x =

1
0
0

+

0
1
0


︸ ︷︷ ︸

aV

+

0
0
1


︸︷︷︸
a
V⊥

but x /∈ V and x /∈ V ⊥.

10.3 Projections

The notion of projecting onto a subspace is one of the most widely used concepts in many branches of
mathematics. In the realm of linear algebra, it is centered around the following question.

Question 10.3.1. Given a subspace V ⊂ Rn and any vector a ∈ Rn, can one always find a linear map that
projects a onto V ? The following picture illustrates the idea

The purpose of this section is to describe the way in which we obtain this projection matrix given a
subspace V . We then end with an example. We could approach the situation naively and use the idea from
proposition 10.2.7. Given a fixed subspace V and an arbitrary vector a ∈ Rn, the algorithm would carry out
as follows:

1. Compute a basis BV of V .

2. Compute a basis BV ⊥ of V ⊥.

3. Write a = aV + aV ⊥

4. The projection of a into V is the vector aV , written as projV a.
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This method works but finding bases is time consuming and inefficient. Moreover, this method does not give
us an explicit matrix that projects any vector onto V . Let’s work methodically.

Suppose V = Span{a1, . . . ,ak} ⊂ Rn and write A =
[
a1 · · ·ak

]
∈ Rn×k. Since Ax is a linear combina-

tion of the columns of A for any x ∈ Rk, we know that Ax ∈ V for all x ∈ Rk. In particular, there exists
some x̂ such that aV = Ax̂ and furthermore

a− aV ⊥ V

From the fact that a− aV ⊥ V we can conclude the following.

a>1 (a− aV ) = a>2 (a− aV ) = · · · = a>k (a− aV ) = 0 =⇒ A>(a− aV ) =

a>1
...

a>k

 (a− aV ) = 0

Since aV = Ax̂ we can conclude that

A>(a−Ax̂) = 0 =⇒ A>a = A>Ax̂

The next step is to investigate A>A a little more. It is worth noting here that it is always a square matrix.

Proposition 10.3.2. If a1, . . . ,ak are linearly independent, then A>A is invertible.

Proof. Since A =
[
a1 · · · ak

]
has linearly independent columns, we know that Null(A) = {0}, hence if

Ax = 0 then A>Ax = 0 and x ∈ Null(A>A). Using this, we need to show that if A>Ay = 0 then y = 0.
This will imply (by the big theorem) that A>A is invertible. Assuming that A>Ay = 0, we can multiply
both sides (on the left) by y> and we obtain the following string of implications

y>A>Ay = 0 =⇒ (Ay)> = Ay = 0 =⇒ ||Ay||2 = 0 =⇒ ||Ay|| = 0 =⇒ Ay = 0

This means that y ∈ Null(A) but Null(A) = {0} hence y = 0.

Now lets characterize projections in a nice way. We have obtained the equation A>a = A>Ax̂ with
aV = Ax̂ and we want to find a matrix M such that Ma = Ax̂ = aV , i.e. the projection matrix. Looking a
little bit closer at A>a = A>Ax̂ we can see that the goal would be to first isolate the vector x̂, then multiply
it on the left by A to obtain Ax = aV . Carrying out the first step requires inverting A>A, which, by the
pevious proposition, requires A to have linearly independent columns. We then reduce the columns of A
to a basis for V to ensure this is the case. Do not forget this.
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Now that we can invert, we have

A>a = A>Ax̂ =⇒ (A>A)−1A>a = x̂

and left multiplying by A we get

A(A>A)−1A>a = Ax̂ = aV = projv a

Proposition 10.3.3. Let V be a subspace of Rn with basis given by {a1, . . . ,ak} and let A =
[
a1 · · · ak

]
.

Then projection onto V is given by the projection matrix

P = A(A>A)−1A>

It is worth noting that any (symmetric) matrix that satisfies P 2 = P is a projection onto some subspace
and it is projection onto a proper subspace of 0 is an eigenvalue. Problem 4 of the problem set from chapter
2 further tells us that all projection matrices are diagonalizable which is a very nice fact.

We end the section with a much needed example.

Example 10.3.4. Lets project a =

3
4
4

 onto the line spanned by

2
2
1

.

Let V = Span
{2

2
1

}. Going along with the procedure just described, we obtain the matrix A =

2
2
1


and then compute A>A =

[
2 2 1

] 2
2
1

 = 9. This is clearly an invertible (1× 1) matrix. The last step is

to plug into the formula for a projection matrix and multiply by a to get projV a.

av = A(A>A)−1A>a =

2
2
1

 (
1

9
)
[
2 2 1

] 3
4
4

 =

2
2
1

 (
1

9
)(18) =

4
4
2


10.4 Applications: Least Squares Regression

Projections come up in many different places in linear algebra but one of the most widely used applications
is that of least squares regression, otherwise known as linear regression. Using notions of projecting onto a
subspace we can find the best fit line to a given set of data points.

We begin with the same setup and notation as we did in the previous section. That is, V = Span{a1, . . . ,ak} ⊂
Rn with ai linearly independent and A =

[
a1 · · · ak

]
∈ Rn×k. Given a vector b ∈ Rn we denote its pro-

jection onto V with bV and we let the “error” be given by e = b−bV (the terminology used here will make
more sense in a bit). Note that e ⊥ V .
Lastly, we have what is know as the normal equations for finding bV which are

A>Ax̂ = A>b and x̂ = (A>A)−1A>b

and we combine them to get the general equation

Ax̂ = bV = A(A>A)−1A>b

The central idea of the whole setup is the following picture, which should help you understand what is to
follow.
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Question 10.4.1. Suppose b /∈ Col(A). What is the closest point in Col(A) to b? (This is a minimization
problem)

Since any point in Col(A) looks like Ax for some x, the question is asking us to find x ∈ Rk such that
||Ax− b||2 is minimized.

General Idea: Since e = b − bV we have b = bV + e with bV ∈ Col(A). Using this fact we can look
more closely at the quantity that we want to minimize. We see that

||Ax− b||2 = ||Ax− bV − e||2 = ||Ax− bV ||2 + ||e||2

The last equality follows from the Pythagoren theorem coupled with the fact that Ax − bV ∈ Col(A) and
e ⊥ Col(A).

Putting this all together, we can conclude that in order to minimize ||Ax − b||2 we want to minimize
||Ax− bV ||2 + ||e||2. We can further simplify this problem by making two observations:

1. ||e|| cannot be changed since it is the perpendicular distance from b to Col(A)

2. By setting x = x̂ where Ax̂ = bV , we see that x̂ is the choice of x that minimizes ||Ax− b||2 because
Ax̂ = bV is the closest point to b in Col(A). In other words

||Ax̂− bV ||2 = 0

These two observations are the key. Lets now see least squares in action before ending with a description of
the general algorithm.
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Example 10.4.2. Find the closest line to the points (0, 6), (1, 0), and (2, 0)

From the picture we can see that no line passes through all 3 points so we will need to find the best fit
line. Lets call each point on this best fit line (t, b) so that b records the vertical height of a point.

The general line in the t− b plane has the form C +Dt where C and D are constants. If the line passed
through the 3 points then

6 = C +D · 0
0 = C +D · 1

and
0 = C +D · 2

would be a system of linear equations with a solution. In other words, the linear system1 0
1 1
1 2


︸ ︷︷ ︸

A

[
C
D

]
=

6
0
0


︸︷︷︸
b

would have a solution.

Since there is no such line, we know this system has no solution, i.e. b /∈ Col(A) so we project b onto
Col(A) via the projection formula. When we do this (using the normal equations) we get bV = Ax̂ with

x̂ =

[
5
−3

]
hence bV = Ax̂ =

 5
2
−1

.

This means that the shortest distance ||Ax − b||2 was obtained via the vector x̂ =

[
5
−3

]
thus we take

the line to have equation b = 5− 3t by setting

[
C
D

]
=

[
5
−3

]
. Therefore the points on the best fit line are of

the form (t, 5− 3t).

Using the equation of the best fit line with the values of t we had initially (t1 = 0, t2 = 1, t3 = 2),
combined with the projection of b onto the column space of A we have5− 3t1

5− 3t2
5− 3t3

 =

 5
2
−1


A few important things to observe here are
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• The points on the best fit line are represented by (ti, bi) where bi records a vertical distance.

• The vertical distance between a given data point and a red point on the best fit line above or below
it is the value ei. That is, the ith entry of the error vector e. This is because b − bV = e. In this
example this translates to 6

0
0


︸︷︷︸
b

−

 5
2
−1


︸ ︷︷ ︸

bV

=

 1
−2
1


︸ ︷︷ ︸

e

=

e1

e2

e3



This line minimizes ||e||2 = e2
1 + e2

2 + e2
3.

Note that since

1
1
1

 ∈ Col(A) (this is always the case!) and e ⊥ Col(A), we always have e>1 =

e1 + e2 + e3 = 0.

We end the section with an outline of the general algorithm outlined in the example.

General method of least squares

Input: Data points (t1, b1), (t2, b2), . . . (tm, bm).
Output:

1. Set b =


b1
b2
...
bn
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2. If there was a line b = C +Dt through all points, then b ∈ Col(A) where
1 t1
1 t2
...

...
1 tn


︸ ︷︷ ︸

A

[
C
D

]
=


b1
b2
...
bn


︸ ︷︷ ︸

b

(a) If the line exists, solve for C and D to obtain the equation of the best fit line.

(b) If not, project b onto Col(A) to get bV = Ax̂. Then set

[
C
D

]
= x̂ to get a line L.

• The points on L are of the form (t, C +Dt)

• The points on the line above or below the data points are of the form (ti, C +Dti)

• The values ei = bi − (C +Dti) are the differences in height between the ith data point and the point
on L above or below it.

• L minimizes ||e||2 = e2
1 + · · ·+ e2

m.

• e1 + · · ·+ em = 0 because 1 ∈ Col(A) and e ⊥ Col(A).

10.5 Problem Set 3

1. (4.3 #1) Find the line that is closest to the following four points in the sense of Section 4.3:

(0, 0), (1, 8), (3, 8), (4, 20).

Show all steps of your work and plot the points and the line.

If b = (0, 8, 8, 20) records the second coordinates of the given four points, and p = (p1, p2, p3, p4) records
the second coordinates of the points on the line you found, at times 0, 1, 3, 4, and e = b− p. What are
the following?

(a) p

(b) e2
1 + e2

2 + e2
3 + e2

4

(c) e1 + e2 + e3 + e4

2. (4.1 #3) Construct a matrix with the required property or say why you cannot:

(a) Column space contains

 1
2
−3

 and

 2
−3
5

, nullspace contains

1
1
1

.

(b) Row space contains

 1
2
−3

 and

 2
−3
5

, nullspace contains

1
1
1

.

(c) Ax =

1
1
1

 has a solution and A>

1
0
0

 =

0
0
0

.

(d) Every row is orthogonal to every column but the matrix is not the zero matrix.
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(e) Columns add to a column of zeros, rows add to a row of ones.

3. The following three parts are unrelated.

(a) Let

S = Span
{

1
2
2
3

 ,


1
3
3
2

}

Find a basis for S⊥

(b) Let P be the following plane in R4

P =
{

x1

x2

x3

x4

 : x1 + x2 + x3 + x4 = 0
}

Find a basis for P⊥

(c) Let P ∈ Rn×n be a matrix satisfying

• P 2 = P

• Every vector in Null(P ) is orthogonal to every vector in Range(P ).

P is a projection matrix. What subspace of Rn does P project onto? Explain why your answer
is true.

4. (4.1, #17)

(a) If S is a subspace of R3 containing only the origin, what is S⊥?

(b) If S is spanned by (1, 1, 1), what is S⊥?

(c) Project b =

2
3
4

 onto the S from (b).

(d) Project b =

2
3
4

 onto the S⊥ from (b).
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5. (4.2 #30)

(a) Find the projection matrix PC onto the column space of

A =

[
3 6 6
4 8 8

]
.

Look carefully at this matrix before you start. Remember that A>A is invertible if and only if
the columns of A are linearly independent.

(b) Find the projection matrix PR onto the row space of A.

(c) Compute B = PCAPR. Can you explain why B is the way it is?

6. (4.1, #6, #7) The following system Ax = b has no solution. You can check if you like, or just believe
me.

x+ 2y + 2z = 5

2x+ 2y + 3z = 5

3x+ 4y + 5z = 9

(a) Find a vector y = (y1, y2, y3) such that y>A = 0 and y>b 6= 0.

(b) If you could produce such a y can you convince your boss that Ax = b has no solution without
solving the system? How would you do that?

(c) Which subspace associated to A did y come from?

(d) Is it true that whenever Ax = b has no solution there will be a y such that y>A = 0 and y>b 6= 0?
Explain.
Hint: If Ax = b has no solution how does the echelon form of the augmented matrix

[
A | b

]
look?

Call this echelon form
[
B | b′

]
. If Bx = b′ has no solution, can you easily produce a y such that

y>B = 0 and y>b′ 6= 0? What is the relationship between the solutions of Ax = b and Bx = b′?

7. A shop with no small change**

Suppose you own an art supply shop that sells n different items (n is very large), and suppose m
children have placed orders for the start of school (m is much smaller than n). Suddenly all coins of
value less than $1 go out of circulation, and you now need to round the prices of your items up or
down. How can you round the prices so that the total price of each order is not affected too much?

We will show that the following is possible using linear algebra.

Theorem 10.5.1. Suppose at most t items of each type has been ordered in total, and no order asks
for more than one item of each type. Then it is possible to round the prices so that the total price of
each order changes by no more than t dollars.

Mathematical formulation:

• Suppose the price of item j is cj . Note that we can assume 0 < cj < 1 for all j since only the
rounding matters.

• Since each order contains only one of each item, we can represent an order Si as a subset of
{1, 2, 3, . . . , n}. For example, if S1 = {2, 6, 9} then child 1 has ordered one of item 2, item 6 and
item 9.
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• We are also told that for each j, item j is in no more that t sets among S1, . . . , Sm. (Note the
role of t in the theorem. Don’t forget what t is!)

• The theorem says that we can find numbers z1, . . . , zn ∈ {0, 1} (the rounded down prices for the
n items) so that each order changes in price by at most t dollars. The change in price of order Si
is |
∑
j∈Si(cj − zj)|. So we’ll get

|
∑
j∈Si

(cj − zj)| ≤ t for all i = 1, 2, . . . ,m (10.5.1)

Running example: Suppose you carry n = 7 items in your shop, m = 3 children place orders, and
no more than t = 2 items of each type are ordered in total. The three orders could be:

S1 = {1, 2, 3, 5, 7}, S2 = {1, 2, 6, 7}, S3 = {3, 4, 5, 6}.

Check n,m, t on this example. Further suppose the costs of the 7 items are

c1 =
1

2
, c2 =

1

4
, c3 =

1

4
, c4 =

3

4
, c5 =

1

2
, c6 =

1

4
, c7 =

3

4
.

By the theorem, we will be able to round (up or down) the 7 prices to z1, . . . , z7 each of which will be
0 or 1, so that each order changes by at most $2 (t = 2).

(a) Suppose each order contained at most s items. In our example, s = 5. Argue that we can easily
round prices so that each order changes by at most s dollars.

So the interesting part about this theorem is that you can do much better if s is large, i.e., each
order has lots of items, but t is small, i.e., the total number of erasers (or easels, or whatever)
ordered is small. In our running example, it is easy to round prices so that no order changes by
more than $5 in price, but the cool thing is that we can get the change in price to be at most $2.
Note that the theorem doesn’t care what the original prices cj are.

The algorithm: The way to round prices is via the following iterative algorithm. This means we
will repeat a procedure over and over again until we get what we want. Comments are in italics.

Initialize: For each item j, let xj be a floating variable that is initially set to cj .

The following iterative method will move each floating xj to 0 or 1 which then becomes the
value of zj (the rounded price). Once this happens, xj is permanently set to zj and we say xj
becomes fixed. In each step of our procedure, at least one floating variable will become fixed.

Call Si dangerous if it has more than t indices j for which xj is still floating; the others sets
are safe. In our running example, all sets are dangerous at the start and all variables are
floating. We will always maintain the following equality:∑

j∈Si

xj =
∑
j∈Si

cj for all dangerous sets Si (10.5.2)

At the start, all variables are floating and the above equation is true since xj = cj for all j.

i. Write down the equations (10.5.2) for all the currently dangerous sets. Think of this as a
system of linear equations with the floating variables as unknowns and the fixed variables as
constants. Find a solution of this system where at least one of the floating variables becomes
0 or 1. We will argue later that this is always possible.

ii. If xj gets set to 0 or 1 then set zj to the value of xj . Declare xj fixed. Several xj’s can get
fixed at the same time.
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iii. If there are no more dangerous sets, then stop. Otherwise, write down the new system of
linear equations (10.5.2) with all the fixed xj ’s turned into zj ’s and thought of as constants.
Do not remove anything from the old system; simply replace xj by it’s fixed value zj in each
equation. A fixed xj is no longer a variable – it has a value — and the number of xj variables
have decreased from the old system to the new system. Go back to step (i).

(b) Run the above algorithm on our example and check that the theorem is true.

In the rest of this problem we argue that the algorithm always produces prices as stated in the
theorem.

(c) Argue that at the start, the linear system in (i) is feasible.

You can say a bit more. Suppose F is the set of indices of the floating variables in the system
and |F | denotes the cardinality of F , i.e., the number of elements in F . In our example, at the
start, F = {1, 2, 3, 4, 5, 6, 7} and so |F | = 7. Argue that the system has a solution strictly inside
the unit cube [0, 1]|F |. Hint: this is a one line answer, just think about what the values of xj are
at the start.

By [0, 1]k we mean a cube with side lengths 1 and with opposite corners (0, 0, . . . , 0) and (1, 1, . . . , 1)
in Rk. See Figure 10.1 to see examples and what it means to be strictly inside the cube [0, 1]|F |.

Figure 10.1: On the left you see the square [0, 1]2 which is the unit cube in dimension 2. Next you see the
boundary of the square in thick lines and a point on the boundary. Then you see the square without its
boundary and a point strictly inside the square (i.e., not on the boundary). At the end is the unit cube [0, 1]3,
which is the usual cube. Its boundary consists of the 6 squares that form the outside of the cube. A point is
strictly inside the cube if it does not lie on any of these 6 squares.

(d) Suppose now you are in some iteration of the algorithm.

i. Argue that there are fewer dangerous sets than floating variables in step (i). In our example,
at the start, we have 3 dangerous sets and 7 floating variables at the start since all variables
are floating at the start, and indeed 3 < 7.
This is the trickiest part of the question, so let’s break it down. Suppose there are f floating
variables and d dangerous sets.

A. Each floating variable can be in at most t dangerous sets. So argue that if we sum up the
number of floating variables in each dangerous set, we get at most ft.

B. Each dangerous set contains at least t + 1 floating variables. So if we again sum up the
number of floating variables in each dangerous set, we get at least d(t+ 1).

C. Write the inequality that relates ft and d(t+ 1) and conclude that d < f .

ii. Argue that the linear system obtained by taking all the equations (10.5.2) as you vary over
dangerous sets Si has a solution space of dimension at least one, i.e., contains a line l. Hint:
Use the previous part and think about when linear systems of equations always have a solution.
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iii. Now argue that there is a solution to the linear system that lies on the boundary of the cube
[0, 1]|F |. Hint: use the line l to find such a point y.

iv. Use the coordinates of y as the values of the floating variables. Argue that at least one
floating variable will get set to 0 or 1.

(e) We keep going through iterations of the algorithm, each time setting up equations (10.5.2) and
fixing some floating variables. Argue that after finitely many iterations, there will be no more
dangerous sets and the algorithm will stop. How many iterations will be needed at worst?

(f) To finish we need to argue that when there are no more dangerous sets, we will have the inequality
(10.5.1).

i. Consider an Si. Argue that it satisfies (10.5.2) and has at most t floating variables.

ii. If there are at most t floating variables in each set Si, can you conclude that the we have
(10.5.1)? Hint: Do you see a way to round the values of the remaining floating variables to
0 or 1 (at most t of them) so that |

∑
j∈Si(cj − zj)| ≤ t?
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Chapter 11

Symmetric Matrices: The Most
Important Matrices You’ll Ever See

In this chapter we will define symmetric matrices and prove the all powerful Spectral theorem for real matri-
ces. Once we are equipped with this theorem, we will dive deeper into the class of symmetric matrices, looking
at positive definite and positive semi-definite matrices. We will finish by seeing a variety of applications.

11.1 Spectral Theorem

Definition 11.1.1. A matrix A ∈ Rn×n is symmetric if A = A>

With this definition in hand, we will prove a sequence of propositions that combine to give the statement
of the Spectral theorem for real matrices. Note that there is also a spectral theorem for complex matrices
that we will see at the end of the course. Before beginning our proof we recall that the conjugate of a
complex number z = a+ bi, denoted z, is obtained by changing the sign of the imaginary part of z. That is

z = a+ bi = a− bi

The complex conjugate satisfies a number of nice properties, the first of which is that

(a+ bi)(c+ di) = (a+ bi)(c+ di)

We also note that the conjugate of a matrix, denoted A, is obtained by conjugating all entries of A. These
will be useful notions for us since eigenvalues of real matrices can be complex numbers, but a complex
number z is in fact a real number if and only if z = z. Similarly, if A ∈ Rn×n then A = A. These two facts
will be needed to prove the first proposition.

Proposition 11.1.2. If A is symmetric then all eigenvalues of A are real.

Proof. Suppose that Ax = λx where λ may be some complex number and x may have some complex entries.
Taking conjugates of both sides of our eigenvalue equation we get

Ax = λx =⇒ Ax = λx =⇒ Ax = λx

We now transpose both sides of this equation. This is where we use the symmetric hypothesis!

(Ax)> = (λx)> =⇒ x>A> = x>λ =⇒ x>A = x>λ

Next, we take the two equations Ax = λx and x>A = x>λ and multiply by x> on the left and x on the
right, respectively. In doing this we obtain

x>Ax = λx>x
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from the first equation and
x>Ax = λx>x

from the second. Combining these two equations we get that

λx>x = λx>x which implies that λ||x|| = λ||x||

hence λ = λ and λ ∈ R.

We can also easily see that the eigenvectors are in fact in Rn

Proposition 11.1.3. If Ax = λx, where λ ∈ R, then x ∈ Rn.

Proof. If Ax = λx then (A−λI)x = 0. Since A−λI is a real matrix, it has a real vector in its kernel, hence
x ∈ Rn.

We saw an example of these propositions in action on the first homework set.

Example 11.1.4. The matrix A =

 1 −1 0
−1 2 −1
0 −1 1

 is symmetric. It’s eigenvalues are λ = 0, 1, 3 with re-

spective eigenvectors x1 =

1
1
1

 ,x2 =

 1
0
−1

, and x3 =

 1
−2
1

. Not only are the eigenvectors and eigenvalues

real, but we can also see that
x>1 x2 = x>1 x3 = x>2 x3 = 0

That is, the eigenvectors are mutually orthogonal. It turns out that this is always true.

Proposition 11.1.5. All eigenvectors coming from different eigenspaces are mutually orthogonal. That is,
if x1 ∈ Eλ1

and x2 ∈ Eλ2
with λ1 6= λ2, then x>1 x2 = 0.

Proof. Suppose Ax = λ1x and Ay = λ2y with λ1 6= λ2.

Ax = λ1x =⇒ (λ1x)> = (Ax)> =⇒ x>λ1 = x>A> = x>A

Multiplying both sides of this equation on the right by y and using the fact that y is an eigenvector we get

x>λ1y = x>Ay = x>λ2y =⇒ λ1x
>y = λ2x

>y =⇒ (λ1 − λ2)x>y = 0

Since λ1 6= λ2 we must have x>y = 0.

Proposition 11.1.6. For each eigenvalue λ we have AM(λ) = GM(λ).

Proof. We will prove this one later but can assume it for now.

Before stating and proving the last proposition we will need some new terminology. The previous propo-
sition tells us that any symmetric matrix admits n linearly independent eigenvectors, i.e. it is diagonalizable.
If we combine this with proposition 11.1.5 we see that we can choose a special set of eigenvectors.

Definition 11.1.7. Let S = {u1,u2, . . . ,un} with ui ∈ Rn. S is a set of orthonormal vectors if

1. u>i uj = 0 ∀ i 6= j

2. ||ui|| = 1 ∀ i

Example 11.1.8. The set

S =
{1

0
0

 ,
0

1
0

 ,
0

0
1

}
forms an orthonormal set because all vectors have length 1 are are mutually orthogonal.
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In some linear algebra courses, extra time is taken to describe a nice algorithm known as the Gram-
Schmidt algorithm. We will assume existence of this algorithm but will not go into the details of explaining
it.

Gram-Schmidt Algorithm

Given any vector space V and a basis B for V , a procedure, known as the Gram-Schmidt algorithm, can be
applied to this basis. It takes the basis B as input and outputs an orthonormal basis for V . We will use this
algorithm in that if we are given a basis for a subspace, we can always obtain an orthonormal one for the
same subspace. Now onto the proposition.

Proposition 11.1.9. If A is symmetric, then A has n orthonormal eigenvectors, i.e. A admits an orthonor-
mal basis for Rn.

Proof. By proposition 11.1.6, we know that each eigenspace Eλ, has maximum possible dimension, equal to
AM(λ). By applying the Gram-Schmidt procedure, we can obtain an orthonormal basis for each Eλ, lets
call it

BEλi = {xi1 ,xi2 , . . . ,xiAM(λi)
}

From proposition 11.1.5, we have that the basis vectors in BEλi are all orthogonal to the basis vectors
in BEλj for all eigenvalues λi 6= λj . By putting all of these basis vectors together, we obtain n linearly

independent vectors, all of whom are orthogonal and have unit length. That is, we obtain an orthonormal
basis of eigenvectors for Rn.

We can now state the Spectral theorem for real matrices.

Theorem 11.1.10. If A ∈ Rn×n is symmetric, then

A = QΛQ−1 = QΛQ>

All eigenvalues of Λ are real and the columns of Q form an orthonormal basis of eigenvectors for Rn.

Proof. The proof of this is a combination of the above propositions. Proposition 11.1.2 implies that the
eigenvalues of A are all real. Proposition 11.1.6 and proposition 11.1.9 imply that A is diagonalizable by a
matrix whose columns form an orthonormal basis.

A few important things must be noted here:

1. The diagonalization of a symmetric matrix is known as an orthogonal diagonalization and the matrix
Q is known as an orthogonal matrix. It satisfies the property that Q> = Q−1.

2. Orthogonal diagonalizations of symmetric matrices are unique up to reordering of the columns. This
is a subtle but crucially important fact. It means that if A is a symmetric matrix and A = Q1Λ1Q

>
1 =

Q2Λ2Q
>
2 , then by reordering the columns of Qi and diagonal entries of Λi, we must have Q1 = Q2

and Λ1 = Λ2. There will be moments where we will encounter several diagonalizations of a symmetric
matrix, and uniqueness will come to the rescue, allowing us to conclude that many of the matrices in
question are in fact equal.

3. In practice, we will not have to apply Gram-Schmidt to obtain our desired orthonormal basis. The
eigenvectors we get from our usual computation will already be orthogonal by proposition 11.1.5, so
we will only need to normalize them in order to obtain an orthonormal basis.

For the sake of completeness, we define orthogonal matrices here, but we will not use them explicitly for
another few sections.

Definition 11.1.11. A matrix Q ∈ Rn×n is orthogonal if Q>Q = QQ> = I. That is, Q> = Q−1.

114



We can alternatively define a matrix to be orthogonal if it’s columns form an orthonormal basis of Rn.
We can check that mutually orthogonal columns of unit length will imply that Q>Q = I as follows.

Let Q =
[
u1 · · · un

]
so that

Q>Q =

u>1
...

u>n

 [u1 · · · un
]

=

||u1||2 u>j ui
. . .

u>i uj ||un||2

 =

1 0
. . .

0 1

 = In

The definition of orthogonal matrix differs by author. Our definition includes the assumption that the
columns are all of unit length, in addition to being orthogonal. Other texts sometimes refer to an orthogonal
matrix as a matrix with orthogonal columns, not necessarily of unit length. Any future reference to the
word orthogonal matrix is taken to mean the former, but if you read texts elsewhere it is good to be aware
of both definitions.

Now lets look at the Spectral theorem in action.

Example 11.1.12. Let A =

 1 −1 0
−1 2 −1
0 −1 1

. The eigenvalues of this matrix are λ1 = 0, λ2 = 1, and

λ3 = 3 with respective eigenvalues given by x1 =

1
1
1

 ,x2 =

 1
0
−1

, and x3 =

 1
−2
1

. After normalizing

these vectors we get x1 = 1√
3

1
1
1

 ,x2 = 1√
2

 1
0
−1

, and x3 = 1√
6

 1
−2
1

. This gives rise to the orthogonal

diagonalization

A = QΛQ> =

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6

0 0 0
0 1 0
0 0 3

1/
√

3 1/
√

3 1/
√

3

1/
√

2 0 −1/
√

2

1/
√

6 −2/
√

6 1/
√

6
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Chapter 12

Change of Basis Review and Why
Orthogonal Diagonalization is So
Great

We all learned about change of basis in math 308 but some of it may have gone over our head. Even if it
made perfect sense the first time, theres no harm in discussing it again. The main idea behind a change of
basis is that it allows us to represent the same transformation geometrically but in a different, and sometimes
more advantageous, coordinate system. We will begin with highlighting a few of the main facts of change of
basis, but for a more thorough treatment of the subject, take a look at the the notes for lecture 12 here

http://www.samroven.com/linear

12.1 Change of Basis

Let’s first address notation. Let x =

[
3
−2

]
∈ R2 be written in the standard basis. The coordinates of x

are expressing its geometric location in the plane. That is, to arrive at the tip of the vector x, you move 3
units to the right of the origin (3 units along e1) and −2 units down from there (−2 units along e2). This
is because

x = 3e1 − 2e2

The coefficients of x in this expression involving the standard basis are what determine its coordinates. This
is the general idea behind change of basis.

Let B =
{[

2
7

]
,

[
1
4

]}
be a (non-standard) basis of R2, In this basis we can express the same vector x as

x = 14

[
2
7

]
− 25

[
1
4

]
and we express this notationally as

[x]B =

[
14
−25

]
With this idea in mind, we can now define this notion in greater generality.

Definition 12.1.1. Let B = {u1,u2, . . . ,un} be a basis for Rn and let

y = a1u1 + a2u2 + · · ·+ anun
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then the coordinate vector of y with respect to the basis B is

[y]B =


a1

a2

...
an


Let U =

[
u1 u2 · · · un

]
∈ Rn×n. We call U the change of basis matrix for the basis B. If y is

taken to be a vector written in the standard basis, then

U [y]B =
[
u1 · · · un

] a1

...
an

 = a1u1 + a2u2 + · · ·+ anun = y

This definition was the upshot when we learned this in the first linear algebra course and we could go
both ways since the change of basis matrix is always invertible.

Proposition 12.1.2. Let y be expressed in the standard basis with B a non-standard basis for Rn. If U is
the change of basis matrix for the basis B then

U [y]B = y and [y]B = U−1y

Example 12.1.3. Continuing from example 11.1.12, we have B =
{[2

7

]
,

[
1
4

]}
and x =

[
3
−2

]
. Going from

the standard basis to this one we see that

[x]B =

[
14
−25

]
=

[
2 1
7 4

]−1 [
3
−2

]

12.2 Linear Maps in Different Bases

Now that we have seen how to write vectors in different bases, we need to dig into how to write a linear map
in a different basis. Recall that any linear transformation is, at first, always given in the standard basis of
the domain and codomain. This is reflected in the formula

A =
[
T (e1) · · · T (en)

]
Geometrically, this linear map may look horrible. It may be turning Rn around on itself, making it very
hard to see what it does geometrically. We can ask the natural question:

Question 12.2.1. Does there exist a basis in which this transofmation looks as nice as possible?

When we say “as nice as possible” we mean to say that the linear map is just scaling along a set of
coordinate axes. Any linear map that looks like this geometrically is given by some sort of diagonal matrix
(you should convince yourself of this).

The answer to this question is yes if the matrix is diagonalizable. We will soon see that this is in some
sense always true, but what we can see now is that this is true in the best way possible for symmetric
matrices. We will dig into this shortly but let’s see why diagonalzable matrices always admit these “ideal”
bases.

Suppose A = QΛQ−1 with B = {u1, . . . ,un} and Q =
[
u1 · · · un

]
. Note that B is our eigenbasis for

Rn. Next, lets take a vector x ∈ Rn with coordinates x =

x1

...
xn

 in the standard basis. Let y = [x]B = Q−1x.

In the basis B, we have
x = Qy
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Now, the fact that A is diagonalizable implies the following

Ax = QΛQ−1 =⇒ Ax = QΛ(Q−1x) = QΛy

We would like to look at the coordinates of the image vector Ax in the basis B. Since Ax = QΛy we apply
Q−1 to both sides of this because it is this matrix that takes us from the standard basis to B. Carrying out
the computation we see that

Q−1(Ax) = Λy

Let’s summarize.

If we change basis from the standard basis to the eigenbasis B, the effect of applying the linear transfor-
mation A is to send

[x]B = y 7→ Λy

This is ideal since linear maps given by diagonal matrices are the easiest ones to understand. If

[x]B = y =

a1

· · ·
an

 and Λ =

λ1

. . .

λn



then the linear map sends y to Λy =


λ1a1

λ2a2

...
λnan

. This just scales along new axes given by the eigenbasis.

This is where the beauty of symmetric matrices come into play. If we picture a generic diagonalizable
matrix, and what its associated linear map looks like in the eigenbasis, we may encounter the fact that the
eigenbasis vectors may not be orthogonal. While the matrix still looks nice, it could be nicer! This best case
scenario would be if we scaled along orthogonal axes, and from the Spectral theorem, we know that this is
always the case for symmetric matrices.

Let’s see this idea in action on a low dimensional example.

Example 12.2.2. Consider the following (symmetric) matrix, along with its orthogonal diagonalization

A =

[
1 2
2 4

]
=

[
2 1
−1 2

]
︸ ︷︷ ︸

Q

[
0 0
0 5

]
︸ ︷︷ ︸

Λ

(
1

5
)

[
2 −1
1 2

]
︸ ︷︷ ︸

Q−1

Here, our eigenbasis is B =
{[ 2
−1

]
,

[
1
2

]}
and we note that these basis vectors have not been normalized

for the sake of having nicer entries.

Let x =

[
5
5

]
, then Ax =

[
15
30

]
. Lets change the coordinates of x and Ax with respect to the eigenbasis

B. We get

[x]B = y = Q−1x =
1

5

[
2 −1
1 2

] [
5
5

]
=

[
1
3

]
and

[Ax]B = Q−1Ax =
1

5

[
2 −1
1 2

] [
15
20

]
=

[
0
15

]
= Λy =

[
0 0
0 5

] [
1
3

]
Sure enough, in the eigenbasis, A is given by stretching along new coordinate axes, i.e. crushing the first

coordinate of any vector to the origin and scaling the second by a factor of 5.
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12.3 Cramer’s Rule

While Cramer’s rule does not have anything to do with change of basis, no second linear algebra course can
be taught without a mention of it. It is a fun and interesting method of solving linear systems of equations
that can be used to interpret solutions to linear systems in different ways.

Question 12.3.1. How did we used to solve Ax = b?

We would set up an augmented matrix
[
A|b

]
and row reduce to find our solution. We saw at a later

time, that if A was invertible, we could compute A−1 directly and use it to solve via

x = A−1b

Most people (if not all) don’t usually enjoy computing inverses of matrices, even small ones. If the given
matrix of coefficients is invertible, Cramers rule comes to the rescue and gives an explicit solution to the
given system.

Theorem 12.3.2. (Cramer’s Rule)
If A ∈ Rn×n has non-zero determinant, then Ax = b is solved by computing determinants.

Let x =

x1

...
xn

 and let Bj be the matrix obtained from A by replacing the jth column of A with the vector

b =

b1...
bn

. The solution to the system is then given by

x1 =
detB1

detA
, x2 =

detB2

detA
, . . . , xn =

detBn
detA

Example 12.3.3. Solve the linear system

3x1 + 4x2 = 2

5x1 + 6x2 = 4

This is represented via Ax = b where A =

[
3 4
5 6

]
and b =

[
2
4

]
. Computing determinants of the three

matrices needed to solve the system we get

det(A) = det
([

3 4
5 6

])
= −2, det(B1) = det

([
2 4
4 6

])
= −4, det(B2) = det

([
3 2
5 4

])
= 2

so

x1 =
−4

−2
= 2, x2 =

2

−2
= −1

Plugging these back in we see that it is the unique solution to the system.

Before ending the section we leave a few parting remarks about Cramer’s Rule.

• If the give system is purely symbolic, then Cramer’s rule allows us to write the solution explicitly in
terms of the inputs.

• Since the solution is given in terms of the input parameters, we can see how solutions change as
parameters change. This is essential in some branches of economics that analyze supply and demand.
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12.4 Problem Set 4

1. (6.4 # 7)

(a) Diagonalize the following matrix with an orthogonal eigenvector matrix Q:

A =

1 0 2
0 −1 −2
2 −2 0

 .
(b) Compute the coordinates y of the point x = (1, 1, 1) in the eigenbasis given by the columns of Q.

(c) Compute the coordinates z of Ax in the eigenbasis given by the columns of Q.

(d) Check that z = Λy.

2. (5.3 #4) Cramer’s Rule Let A =
[
~a1 ~a2 · · · ~an

]
∈ Rn×n be an invertible matrix. We will solve the

general equation

~b =


b1
b2
...
bn

 = A~x = x1~a1 + x2~a2 + · · ·+ xn~an (12.4.1)

(a) Use properties of determinants to show that x1 = det(B1)
det(A) , where B1 =

[
~b ~a2 · · · ~an

]
. We pro-

ceed in steps:

i. Recall the following facts about determinants, letting B be a matrix obtained from A via
some row operation.

• If B is obtained by swapping rows of A, then det(B) = −det(A).

• If B is obtained by multiplying a row of A by a constant c, then det(B) = cdet(A)

• If B is obtained by adding a multiple of one row of A to another, then det(B) = det(A).

Argue that the same properties hold true for column operations. (this is one of the rare
instances where column operations actually don’t mess things up)

ii. Find a relationship between det(B1) and det(A) by making an appropriate substitution for
~b = x1~a1 + x2~a2 + · · ·+ xn~an in equation (1) and using part (i).

iii. Conclude that x1 = det(B1)
det(A)

(b) Use part (a) to argue that xi = det(Bi)
det(A) for all i = 2, 3, . . . , n, whereBi =

[
~a1 ~a2 · · · ~ai−1

~b ~ai+1 · · · ~an
]
.

3. Suppose ~u ∈ Rn is a unit vector. This problem is about the matrix H = I − 2~u~u>

(a) Compute H2. Is H symmetric? Is H orthogonal? Explain your answers.

(b) Show that ~u is an eigenvector of H and find its corresponding eigenvalue λ~u.

(c) Let ~v ∈ Rn be orthogonal to ~u. Argue that ~v is an eigenvector of H and find its corresponding
eigenvalue λ~v.

(d) What is the multiplicity of λ~v? Is H diagonalizable? Why or why not?

(e) Let hii denote the diagonal entries of H. What is
∑n
i=1 hii? How does this compare to the sum

of the eigenvalues?
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(f) Explain what the transformation H is doing geometrically and explain why? (This shouldn’t be
longer than one or two sentences)

4. (6.4 #27) Find all 2× 2 matrices that are both symmetric and orthogonal. In each case what are the
eigenvalues and what must the determinant of such matrices be?

5. (6.4 #8) Find all orthogonal matrices that diagonalize

[
9 12
12 16

]
.

6. (6.4 #10)

(a) If A3 = 0 then what are the eigenvalues of A?

(b) Find a matrix A that is not the zero matrix for which A3 = 0.

(c) Is there a symmetric matrix A that is not the zero matrix for which A3 = 0?

7. We call a real matrix A ∈ Rn×n anti-symmetric if A> = −A. Explain the following facts about A:

(a) Give an example of a 3× 3 anti-symmetric matrix.

(b) Argue that the diagonal elements of any anti-symmetric matrix must be 0.

(c) Argue that ~x>A~x = 0 for all ~x ∈ Rn (Hint: Use the fact that ~x>A~x is a scalar so that
(~x>A~x)> = ~x>A~x).

(d) Recall that a complex number z ∈ C is of the form z = a + ib where a, b ∈ R, where i =
√
−1

satisfies the equations i2 = −1, i3 = −i, and i4 = 1 (if you’d like, you may think of C as a
two-dimensional real vector space with basis given by {(1, 0), (0, i)}). The complex conjugate of a
complex number is given by z = a+ ib = a− ib and satisfies the property that z1z2 = z1z2. We
say that a complex number z = a+ ib is purely imaginary if a = 0, that is, z is of the form bi for
some b ∈ R. Using the notion of a complex conjugate, we can say that a non-zero complex
number z is purely imaginary if z = −z, this is the optimal definition for this question. Given
a vector x with possibly complex entries, we let x denote the vector whose entries are conjugates

of the entries of x. For example if x =

 i
−i

1 + 2i

, then x =

 −ii
1− 2i

. Just like we did for vectors

with real entries, we denote the square norm of a complex vector by x>x = ||x||2. Checking this
with our example we get

x>x =
[
−i i 1− 2i

]  i
−i

1 + 2i

 = −i2 − i2 + (1 + 2i)(1− 2i) = 7 = ||x||2

We also have the exact same notions for matrices and vectors, that is Ax = Ax. Now, onto the
question:

Argue that the eigenvalues of a real anti-symmetric matrix are purely imaginary.
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(Hint: You may want to look at the proof in the notes that real symmetric matrices have real
eigenvalues for inspiration. Begin by considering the equation Ax = λx where x can have com-
plex entries and λ is a complex number. First multply both sides by x> and use the fact that
x>y = y>x to get a statement involving the square norm of the eigenvector x. Then, conjugate
both sides of Ax = λx to simplify the previous equation further. You will want to conclude that
λ = −λ.)

(e) Use (d) to argue that if n is odd, then det(A) = 0 and if n is even then det(A) ≥ 0. Give an
example where A is invertible.

8. * The Petersen Puzzle

Before you attempt this problem, you should read the recent article about Ringel’s conjecture in Quanta
Magazine. It will help understand the problem statemnt and also show you the current day status of
problems related to this one! The animations there illustrate the notion of tiling needed in this problem.
https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/

Below you see two important graphs:

• On the left is the Petersen graph with 10 nodes and 15 edges.

• On the right is the complete graph on 10 vertices called K10 with 10 nodes and 45 edges (i.e., all
possible edges among 10 nodes).

Each node in K10 has 9 edges incident to it while each node in the Petersen graph has 3 edges incident
to it. So it is plausible that K10 can be covered perfectly (the technical word is tiled) by 3 Petersen
graphs. This means that you can lay down three Petersens on K10 so that vertices go to vertices and
each edge of K10 lies under an edge of exactly one of the three Petersens. In the exercise below we
will use several things we have learned so far to argue that it is NOT possible to cover K10 with 3
Petersens.

Fact: The adjacency matrix of the Petersen graph has eigenvalue 1 with multiplicity 5. It does not
have −3 as an eigenvalue.

(a) If J10 is the 10× 10 matrix with all entries equal to 1 and I10 is the 10× 10 identity matrix, then
argue that the adjacency matrix of K10 is J10 − I10.

(b) If there were three Petersen graphs called P,Q,R that cover K10, and their adjacency matrices
are AP , AQ, AR, then argue that

AP +AR +AQ = J10 − I10.
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(c) Argue that the matrix AP−I10 has a 5-dimensional nullspace. Hint: look at the given multiplicity
of 1 as an eigenvalue of AP . You will need to use the Spectral theorem here!

(d) Argue that the nullspace of AP − I10 is in the orthogonal complement of 1 = (1, 1, . . . , 1) ∈ R10.
Hint: Where must 1 lie for this to be true?

(e) What is the dimension of the orthogonal complement of 1?

(f) The above results are also true for AQ − I10 since Q is also a Petersen graph. Therefore, argue
using dimensions of the subspaces you have looked at, that

i. there is a non-zero vector w in the intersection of nullspace(AP−I10) and nullspace(AQ−I10),
and

ii. 1>w = 0.
Hint: Can there be two subspaces in some n dimensional vector space of dimensions a and b
that only intersect at the origin if a+ b > n? Try some small examples in R2 and R3 to gain
some intuition.

(g) Now compute ARw using the expression AR = (J10 − I10 −AP −AQ) from (b) and observe that
−3 is an eigenvalue of AR.

(h) What can you conclude?
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Chapter 13

Positive Definite/Positive
Semi-Definite Matrices

We now examine a new class of matrices, which live inside of the space of all symmetric matrices. The
positive definite and positive semi-definite matrices have a number of surprising applications to many fields
of math, the main one of interest to us being Laplacians of graphs. The first observation of this chapter is
surprising in itself.

13.1 Motivation and Definitions

The first nice observation is that to every symmetric matrix A ∈ Rn×n, we can associate a quadratic function
in n variables. When n = 2 it can be easily seen

[
x y

] [a b
b c

] [
x
y

]
=
[
ax+ by bx+ cy

] [x
y

]
= ax2 + bxy + bxy + cy2 = ax2 + 2bxy + cy2

In general, we can build up any quadratic function this way. Given a symmetric matrix A ∈ Rn×n and any

vector x =


x1

x2

...
xn

 we obtain a quadratic function

q(x1, x2, . . . , xn) = x>Ax

in n variables. With a little thought one can see that given any quadratic function, we can find its associated
symmetric matrix.

Example 13.1.1. Let q(x, y) = 2x2 − 15xy + 3y2. Then if A =

[
2 −15/2

−15/2 3

]
we have

[
x y

]
A

[
x
y

]
=
[
x y

] [ 2 −15/2
−15/2 3

] [
x
y

]
= q(x, y)

The behavior of this quadratic function depends on the symmetric matrix we started with and this
dependence leads to a natural definition of positive definite (abbreviated PD) and positive semidefinite
(abbreviated PSD) matrices.
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Example 13.1.2. Let A =

[
1 −5
−5 1

]
. The associated quadratic is

q(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [ 1 −5
−5 1

] [
x
y

]
= x2 − 10xy + y2

The eigenvalues of this matrix are λ = −4, 6 and det(A) = −24. A graph of the associated quadratic looks
as follows

Note that the quadratic contains points with negative values and is not convex. Moreover, it has a
negative eigenvalue and negaive determinant.

Example 13.1.3. Let A =

[
10 −5
−5 2

]
. The associated quadratic is

q(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [10 −5
−5 2

] [
x
y

]
= 10x2 − 10xy + 2y2

The eigenvalues of this matrix are λ = −0.403, 12 and det(A) = −5. A graph of the associated quadratic
looks as follows

Note that the quadratic contains points with negative values and is also not convex. Moreover, it has a
negative eigenvalue and negaive determinant.
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Example 13.1.4. Let A =

[
100 −5
−5 20

]
. The associated quadratic is

q(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [100 −5
−5 20

] [
x
y

]
= 100x2 − 10xy + 20y2

The eigenvalues of this matrix are λ = 19.88, 100.31 and det(A) = 1975. A graph of the associated quadratic
looks as follows

Note that the quadratic contains no points with negative values and is convex.. Moreover, it has all
positive eigenvalues and a positive (and large) determinant.

Example 13.1.5. Let A =

[
500 −5
−5 500

]
. The associated quadratic is

q(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [500 −5
−5 500

] [
x
y

]
= 500x2 − 10xy + 500y2

The eigenvalues of this matrix are λ = 495, 505 and det(A) = 249975. A graph of the associated quadratic
looks as follows

Note that the quadratic contains no points with negative values and is convex. In some sense it is more
positive than the previous example. Moreover, it has all positive eigenvalues and a positive (and huge)
determinant.
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The last two examples were special in the sense that q(x, y) ≥ 0 for all x, y in the domain of the function.
The distinguishing characteristics of the behavior of these functions allows us to break symmetric matrices
up into smaller pieces, giving rise to the main notions of this chapter. Before defining positive (semi)definite
matrices, we need a new definition.

Definition 13.1.6. Given a matrix A ∈ Rn×n, a principal minor of A if the determinant of the submatrix
obtained by deleting any number of the same rows and columns. Along the same lines, a leading principal
minor or A is a determinant of a sub matrix obtained by deleting the last n − k rows and columns of A.
This is denoted by Dk.

This definition involves a bit of unpacking so lets look at an example.

Example 13.1.7. Let A =

1 4 6
4 2 1
6 1 6

. Given any n × n matrix, there are exactly n leading principal

minors, one for each value of 1 ≤ k ≤ n. Note that when we delete columns we can think of deleting them
in order, going from the bottom right corner to the top left. The leading principal minors are

D3 = det
(1 4 6

4 2 1
6 1 6

), D2 = det
([

1 4
4 2

])
, D1 = 1

Computing the principal minors is more involved since there are many more of them. The leading principal
minors are also principal minors but we exclude those here. We can categorize principal minors by the size
of the submatrix we are taking the determinant of. There is only one 3 × 3 principal minor, namely the
leading one that we already computed. There are several 2 × 2 principal minors. The first is obtained by
deleting the first row and colum of A and the second is obtained by deleting the second row and second
column. They are

det
([

2 1
1 6

])
= 11, det

([
1 7
6 6

])
= −36

There are two 1 × 1 principal minors, both of which are obtained by deleting two rows and columns. By
deleting rows and columns 1 and 3 from A we obtain 2, and by deleting rows and columns 1 and 2 from A
we obtain 6.

We can now define the namesake matrices of the chapter.

Definition 13.1.8. A ∈ Rn×n is positive semidefinite, denoted A � 0, if any of the following equivalent
conditions are true:

• x>Ax ≥ 0 for all x ∈ Rn. Note that this is saying the associated quadratic has non-negative output
for all values in the domain.

• All eigenvalues of A are non-negative.

• There exists some matrix B such that A = B>B. This definition is important and such a factorization
of A is called a Cholesky factorization. Note that we could equivalently write A = BB> as a
Cholesky factorization so the two forms are equivalent.

• All principal minors are non-negative.

Definition 13.1.9. A ∈ Rn×n is positive definite, denoted A � 0, if any of the following equivalent
conditions are true:

• x>Ax > 0 for all nonzero x ∈ Rn. Note that this is saying the associated quadratic has positive output
for all values in the domain.

127



• All eigenvalues of A are positive.

• There exists some matrix B such that A = B>B with B having linearly independent columns. We
note that Cholesky factorizations are not unique and there are many different sized matrices B that
can admit such a factorization.

• All leading principal minors are positive.

A nice result of these definitions is that all positive (semi)definite matrices must be symmetric since the
Cholesky facorization of a given matrix implies symmetry right away due to the fact that (B>B)> = B>B

Example 13.1.10. Let A =

[
1 2
2 4

]
. This is a psd matrix which we will verify with each equivalent

definition.

•
q(x, y) =

[
x y

] [1 2
2 4

] [
x
y

]
= x2 + 4xy + 4y2

It is not immediately clear but a graph of this function will show that q(x, y) ≥ 0 for all

[
x
y

]
∈ R2.

This means it is a positive semidefinite matrix.

• The eigenvalues are 0 and 5 which are both non-negative.

• [
1 2
2 4

]
=

[
1
2

]
︸︷︷︸
B

[
1 2

]︸ ︷︷ ︸
B>

Cholesky factorizations can be computed by inspection many times once you choose a rank of your
matrix B. Picking B to be the simplest kind of rank 1 matrix here ends up yielding a factorization.

• The 1 × 1 principal minors are 1 and 4. The 2 × 2 principal minors are 0. All of these values are
non-negative as we expected.

Example 13.1.11. Let A =

2 1 1
1 2 1
1 1 2

. This is a positive definite matrix matrix which we will verify with

each equivalent definition.

•

q(x, y) =
[
x y z

] 2 1 1
1 2 1
1 1 2

xy
z

 = 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz

It is again not immediately clear but a graph of this function will show that q(x, y, z) > 0 for allxy
z

 ∈ R3. This means it is a positive definite matrix. In practice, checking this condition graphically

is a bad idea and should not be done. We will see that this equivalent definition acts more as a useful
tool for making argument involving positive (semi)definite matrices.

• The eigenvalues are 1, 1, and 4 which are all positive.
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• One can show that

A =

1 1 0
0 1 1
1 0 1


︸ ︷︷ ︸

B

1 0 1
1 1 0
0 1 1


︸ ︷︷ ︸

B>

Note that B is invertible and has linearly independent columns.

• The leading principal minors are 2, 3, and 4 respectively, which are all positive, as expected.

Now that we have a feel for what these definitions entail, lets see why some of them are equivalent. We
do it for the positive semidefinite case and leave out a proof of the equivalent definition involving minors.

Proposition 13.1.12. A is positive semidefinite if and only if any of the following conditions are true

1. x>Ax ≥ 0 for all x ∈ Rn.

2. All eigenvalues of A are non-negative.

3. There exists some matrix B such that A = B>B.

Proof. We first show that x>Ax ≥ 0 for all x ∈ Rn if and only if all eigenvalues of A are non-negative. If
x>Ax ≥ 0 ∀x and Ax = λx then

x>Ax = x>λx = λx>x = λ||x||2

We can then conclude that

x>Ax ≥ 0 ∀x ∈ Rn ⇔ λx>x ≥ 0 ∀x ∈ Rn ⇔ λ ≥ 0

Next, we show that if A = B>B then x>Ax ≥ 0 for all x ∈ Rn. Using the Cholesky factorization for A in
our quadratic function we get that

x>Ax = x>B>Bx = (Bx)>(Bx) = ||Bx||2 ≥ 0 ∀x

Lastly, we assume that the quadratic function is non-negative and obtain a Cholesky factorization. Re-
member, anytime we are considering a psd matrix, it must be symmetric to begin with! This means that
A is orthogonally diagonalizable by the spectral theorem hence we can write A = QΛQ>. Moreover, we

know that Λ ≥ 0 by the previous equivalence that we just proved. Let
√

Λ =


√
λ1

. . . √
λn

 and set

B =
√

ΛQ>. We then see that

B>B = (
√

ΛQ>)>(
√

ΛQ>) = Q
√

Λ
√

ΛQ> = QΛQ = A

Now that we are equipped with the machinery of these matrices, we can dig into some applications.

13.2 Laplacian of a Graph and a Peek into Spectral Gap Theory

Consider the following graph G

1 2 3

4
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Definition 13.2.1. Let G be a graph with vertices indexed by i. The degree of vertex i, denoted di, is
the number of edges incident (next to) vertex i.

With the notion of degree, we can construct a diagonal matrix DG whose ith diagonal entry is the degree
di. And for the graph G above we have

DG =


2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 2


Recall that the adjacency matrix for a graph G is given by AG = (aij) where

aij =

{
1 there exists an edge from i to j

0 otherwise

We can now define the Laplacian.

Definition 13.2.2. Given a graph G with diagonal matrix DG as above and adjacency matrix AG. The
Laplacian of G is defined to be

LG = DG −AG

With the graph given above we have

AG =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

 and LG = DG −AG =


2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2


LG holds a tremendous amount of information about G. Before seeing why, we state some nice facts

concerning LG.

• λ = 0 is always an eigenvalue of LG because the rows (by definition) always sum to 0. This means not
only that 0 is an eigenvalue but it also means that 1 is always an eigenvector of eigenvalue 0.

• The more amazing fact is that LG is always positive semidefinite. This is because we can always factor
the Laplacian as LG = BGB

>
G where BG is the “directed” node-edge incidence matrix of G. BG

is computed using the following rules:

– Label the rows of BG according to the nodes of the graph G

– Label the columns according to the edges of the graph with a direction. We label every edge as
{ij} where we ensure that i < j. Then we turn G into a directed graph by drawing arrows along
our edges according to the rule that all arrows go from i to j for i < j. Turning G into a directed
graph according to this rule looks like

1 2 3

4

– Let BG = (bk,ij) where the rows are indexed by the nodes, k, and the columns are indexed by the
edges, ij, we then have

bk,ij =


1 k = i

−1 k = j

0 otherwise
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With our graph G, the corresponding directed node-edge incidence matrix is

BG =


1 1 0 0
−1 0 1 1
0 0 −1 0
0 −1 0 −1


One of the beautiful facts about this matrix is that it always satisfies the equation

LG = BGB
>
G

We may safely assume this fact without proof.

The last fact we state as a proposition.

Proposition 13.2.3. Let E be the set of edges of G. Then if x =

x1

...
xn

 we always have

x>LGx =
∑
{ij}∈E

(xi − xj)2

Proof. We prove this just with our example but from this one case we will be able to see how a general
argument could follow.

The first observation is to use the Cholesky factorization of LG to express the quadratic function as a
sum of squares. That is

x>LGx = x>BGB
>
Gx

By multiplying out x>BG and B>Gx we can see that each edge (column of BG) gives rise to exactly one entry
of 1 and one entry of −1. When we multiply x>BG the resulting row vector contains an entry of the form
(xi − xj) for each instance of ±1 in the column corresponding to the edge {ij}. We get the same thing for
BGx. Looking at the example we can see this in action

(x>BG)(B>Gx) =
[
x1 x2 x3 x4

] 
1 1 0 0
−1 0 1 1
0 0 −1 0
0 −1 0 −1


︸ ︷︷ ︸

BG


1 −1 0 0
1 0 0 −1
0 1 −1 0
0 1 0 −1


︸ ︷︷ ︸

B>G


x1

x2

x3

x4



=
[
(x1 − x2) (x1 − x4) (x2 − x3) (x2 − x4)

] 
(x1 − x2)
(x1 − x4)
(x2 − x3)
(x2 − x4)


= (x1 − x2)2 + (x1 − x4)2 + (x2 − x3)2 + (x2 − x4)2 =

∑
{ij}∈E

(xi − xj)2

We can now summarize all of these facts with a theorem.

Theorem 13.2.4. Let G be a graph with n vertices and let LG denote the Laplacian of G. Let 0 = λ1 ≤
λ2 ≤ λ3 ≤ · · · ≤ λn denote the eigenvalues of LG.
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1. LG is positive semi-definite.

2. λ1 = 0 is an eigenvalue with 1 as an eigenvector.

3. λ2 > 0 if and only if G is connected (you can get from one vertex to any other via a sequence of edges)

Proof. 1 follows from the Cholesky factorization of LG and 2 follows from the fact that the rows of LG sum
to 0. We illustrate the third fact on a different example, from which the general case should be clear. The
following is an example of a disconnected graph and we show that the graph is disconnected if and only if
the second eigenvalue is 0.

Consider the following graph G

1 2 4

3 6

5

Computing the Laplacian of this graph, we see that it breaks up into blocks, with zero blocks coming
from the lack of connectivity between connected components of the graph.

LG =


2 −1 −1
−1 2 −1
−1 −1 2

0

0
2 −1 −1
−1 2 −1
−1 −1 2


From here, we can explicitly find two linearly independent eigenvectors by leveraging the fact that the

individual Laplacians of the connected subgraphs of G have 1 as an eigenvector of eigenvalue zero. From
this we get eigenvectors of eigenvalue zero being

1
1
1
0
0
0

 and


0
0
0
1
1
1


This tells us that AM(0) ≥ 2, hence λ2 = 0. This means that if G is disconnected, then λ2 = 0.

If G is connected, we need to show that AM(0) = 1. This will imply that λ2 > 0 from the fact that LG
is positive semidefinite. Let x be an eigenvector of eigenvalue 0. The fact that LGx = 0 implies that

0 = x>LGx =
∑
{ij}∈E

(xi − xj)2

Since each summand, (xi − xj)2 is non-negative, it must be true that xi = xj . In other words, xi = xj for

all {ij} ∈ E. Since G is connected, every instance of 1 ≤ i, j ≤ n occurs, so with x =


x1

x2

...
xn

 this means that

x = c


1
1
...
1

 = c1
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This means that the only eigenvectors of eigenvalue 0 are multiples of 1, hence GM(0) = AM(0) = 1 and
λ2 > 0.

λ2 is known as the spectral gap. It measures the connectivity of the graph G. The larger λ2 is, the
more connected G is, and when λ2 is “as big as possible”, G is complete. The notion of the spectral gap
is extremely useful in clustering algorithms which we will soon see in homework. For a very nice article on
clustering take a look at

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

13.3 Application: Distance Realization

We end the chapter with one last application of positive semidefinite matrices.

Question 13.3.1. Are there three points p, q, r ∈ R2 such that

||p− q|| = ||q − r|| = 1 and ||p− r|| = 3?

The answer is no! The reason is because of the triangle inequality which states

||p− r|| ≤ ||p− q||+ ||q − r|| =⇒ 3 ≤ 2

We could investigate the same sort of question in higher dimensions. That is, are there four points
p, q, r, s ∈ R3 with the following distances?

The answer is again no! However, the triangle inequality presents no problems this time. The following
theorem, known as Shoenbergs’s theorem (1935), is the main tool for answering these kinds of questions.

Theorem 13.3.2. Given “distances” dij ≥ 0 for i, j = 0, 1, . . . , n and dii = 0 for all i, there exist points
p0, p1, . . . , pn ∈ Rn with ||pi−pj || = dij if and only if the matrix M = (Mij), where Mij = 1

2 (d2
i0 +d2

0j−d2
ij),

is positive semidefinite. If such points exist we say the points are realizable

Before proving the theorem, we illustrate its use on the example with four points above. The trick is
computing the matrix M . First, we must construct a matrix whose entries are the perscribed distances. The
rows and columns of this matrix are indexed starting from 0 to n so the d0i and dj0 entry make sense.
For the example above, the distance matrix is

D =


0 2 3 2
2 0 2 3
3 2 0 2
2 3 2 0
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From here, we label the entries of the matrix D = (dij) and compute the entries of the matrix M = (Mij)
via the formula

Mij =
1

2
(d2
i0 + d2

0j − d2
ij)

The matrix M in this example is

M =

 8 9 −1
9 18 9
−1 9 8


A quick computation shows that det(M) < 0 hence M is not psd and the points are not realizable.

Now let’s prove the theorem. We will need to use the cosine theorem as a lemma.

Lemma 13.3.3. Given x,y ∈ Rn

||x− y||2 = ||x||2 + ||y||2 − 2x>y

always holds. Note that this can alternatively be written as

x>y =
1

2
(||x||2 + ||y||2 − ||x− y||2)

We omit the proof of the cosine theorem but use the result to now prove Shoenbergs’s theorem.

Proof. We first assume that the distances are realizable and aim to show that M � 0. If the points are
realizable then there exist points p0, p2, . . . , pn ∈ Rn such that

||pi − pj || = dij

We can shift everything to the origin and assume that p0 = 0. Next, set xi = pi − p0 for i = 1, . . . , n. This
implies that ||xi|| = di0 = d0i, ||xj || = d0j = dj0, and dij = pi = pj = ||xi − xj ||. By the cosine theorem, we
have

x>i xj =
1

2
(||xi||2 + ||xj ||2 − ||xi − xj ||2) =

1

2
(d2
i0 + d2

0j − d2
ij) = Mij

Upon closer inspection we can see that

M = (Mij) = (x>i xj) =


x>1
x>2
...

x>n

 [x1 x2 · · · xn
]

= B>B

hence M is positive semidefinite.

The other direction follows similarly. If M is positive semi definite, then M = B>B for some matrix
B ∈ Rn×k. Set p0 = 0 and set pi = the ith column of B for i = 1, . . . , n. Then we have Mij = p>i pj .
Working backwards from the first half of the proof we get that the cosine theorem holds for all i, j and can
conclude that the diastances are realizable.

Next we are off to the SVD!
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13.4 Problem Set 5

Many of the questions below are based on the four equivalent definitions of a matrix being positive semidefi-
nite (psd) or positive definite (pd). In each case, there is usually one definition that will be the most efficient
for what you need to do.

1. (All parts are unrelated)

(a) Is the following matrix positive semidefinite?1 1 1
1 2 2
1 2 1



(b) (6.5 #12) Find all values of d for which the following matrix is positive definite.1 2 3
2 d 4
3 4 5



(c) Argue that the only orthogonal, symmetric, and positive definite matrix is the identity.

2. (6.5 # 14)

(a) If S is positive definite, is S invertible? If S is invertible, is S−1 also positive definite?

(b) If S is a positive semidefinite matrix is S always invertible? If not provide an example.

3. Use Shoenberg’s theorem to decide if the following distances are realizable. By this I mean, are there
four points p0, p1, p2, p3 in some dimension such that the (i, j) entry in the following matrix is the
distance between pi and pj? 

0 1 3 2

1 0
√

10
√

5

3
√

10 0
√

13

2
√

5
√

13 0


If the distances are realizable, find four points that realize them (Look at the proof of Shoenberg’s
theorem if you need to find the points).

4. (a) Let q(x, y) = x2 + 4xy + 9y2.

i. Write down the symmetric matrix Q such that q(x, y) =
(
x y

)
Q

(
x
y

)
.

ii. Why is q(x, y) ≥ 0 for all (x, y) ∈ R2?

iii. Show that q(x, y) ≥ 0 for all (x, y) ∈ R2 by writing it as a sum of squares by factoring Q as
BB>.
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(b) Find a quadratic function in x, y that is going to be negative for some (x, y). What is your
strategy?

5. (a) Argue that the set of all n× n symmetric matrices forms a subspace of Rn×n.

(b) Recall that psd matrices are symmetric. Show that the set of all n× n psd matrices DOES NOT
form a subspace in the space of all n× n symmetric matrices.

(c) However psd matrices do have structure. Argue that for n× n matrices,

i. if A � 0 and B � 0, then A+B � 0,

ii. if A � 0 and λ ≥ 0 then λA � 0.
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6. Given any psd matrix A, we can associate it with its determinant. Since a psd matrix must have all
non-negative minors, it follows that psd matrices must have non-negative determinant. We can there
for associate any psd matrix to a non-negative real number r ∈ [0,∞). We have known for years that
any positive real number r has two square roots, namely ±

√
r, and

√
r is the unique positive number

whose square is r. In this problem, we will see that the corresponding notion of “positive number” for
matrices, is positive semi-definite. Given a matrix A ∈ Rn×n, we say a matrix B is a square root of
A if B2 = A. First, some examples:

(a) Consider the linear transformations T, S : R3 → R3 given by

T
(x1

x2

x3

) =

x3

0
0

 and S
(x1

x2

x3

) =

x2

x3

0


Show that S is a square root of T .

(b) Find the square roots of the matrix

A =

[
2 2
2 2

]
How many did you find? Hint: Compute an orthogonal diagonalization of A and look back in
the psd notes to see how one shows that the existence of a Cholesky factorization is an equivalent
definition of psd.

(c) Let A ∈ Rn×n be an arbitrary positive semi-definite matrix. Argue that A has a square root.
Hint: Mirror what you did in part (c) in a general setting. Are the square roots of a psd matrix
always psd? Why or why not? (Note: A matrix can have many square roots and the last question
is asking if all square roots of a given psd matrix are psd)

(d) Find infintely many square roots of I2. Can you find them all? (You aren’t required to find them
all. Just finding infinitely many is sufficient)

7. We always order the eigenvalues of the Laplacian of a graph on n vertices as λ1 ≤ λ2 ≤ · · · ≤ λn. This
is possible since all eigenvalues are real.

Consider the following graph H:

1

2

3

4

5

6

7

(a) Write down the Laplacian LH of the graph H.

(b) Factor LH as BB>.

(c) Compute the quadratic function x>LHx and write it as a sum of squares.

(d) Find a basis for the eigenspace of LH corresponding to the eigenvalue 0.

(e) Based on the above which is the first eigenvalue of LH that is going to be positive?

(f) Do you see a connection between the arithmetic multiplicity of the eigenvalue 0 and the number
of connected components in a graph?
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8. Spectral Clustering - Part 1

The second smallest eigenvalue λ2 of the Laplacian LG of a graph G is called the Fiedler value of G,
and its eigenvector w is called the Fiedler vector of G. We saw that G is connected if and only if
λ2 6= 0. In this exercise we will see an application of the Fiedler vector w.

An important task in data science is to find clusters in a graph. By a cluster we mean a group of
vertices that are relatively well connected amongst themselves but not so well connected to the rest of
the vertices. For example, suppose G is a social network graph with people as vertices and an edge
between two people who know each other. Then some natural clusters might be all people who belong
to the same church, or soccer club, or do Tai Chi etc. Someone from church may also know someone
who does Tai Chi, but perhaps there are only a few such pairs. Knowing clusters in graphs allows
one to understand how information or infection might spread in that network. Advertisers use cluster
information to target similar ads to people in a given cluster. If you bought a particular knee support
for soccer, then chances are that your soccer friends might also buy it, where as your church friends
may not. In this exercise we will use linear algebra to find clusters in a graph.

Running example: The graph below is a reproduction of the example from https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

with vertices relabeled as 1, . . . , 10.

6

5 4 3 2

1

9107 8

This graph has two obvious clusters in it, the cluster of vertices {4, 5, 6, 7, 8} and the cluster of vertices
{1, 2, 3, 9, 10}. There is only one edge between these two groups while vertices in a group have more
connections among them.

How do we find clusters in large complicated graphs? To talk about clusters, we use the math termi-
nology of cuts in graphs.

Definition 13.4.1. Let G be a graph with vertex set V = {1, 2, 3, . . . , n} and edge set E consisting of
pairs of vertices {i, j}. If A ⊆ V is a subset of vertices, we use the notation V \A for the vertices in V
that are not in A. Also, |A| denotes the cardinality of the set A, which is the number of elements in A.

In our example, V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and E = {{1, 2}, {1, 3}, {2, 3} . . .}. If A = {4, 5, 6, 7, 8},
then |A| = 5, V \A = {1, 2, 3, 9, 10} and |V \A| = 5.

(a) A cut in G is a partition of V into two sets A and V \A for some subset of vertices A ⊂ V . This
is sometimes called the cut induced by A.

(b) Let E(A, V \A) be the edges that go between the vertices in A and V \A. These are the edges
holding A and V \A together in G. In our example, the cut induced by A = {4, 5, 6, 7, 8} has
E(A, V \A) = {{1, 6}}.
Then the density of the cut induced by A is

φ(A, V \A) = n · |E(A, V \A)|
|A| · |V \A|
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ForA = {1, 3, 4, 5, 6, 7} (different from theA we considered previously), E(A, V \A) = {{1, 2}, {2, 3}, {1, 9}, {1, 10}, {6, 8}, {7, 8}}
and φ(A, V \A) = 10 · 6

6·4 = 5
2 . Note that there are 6 edges between A and V \A but there could

have been 6 · 4 = 24 between A and V \A (which would have been the case if G was the complete
graph K10). So 6

6·4 is the ratio of the number of edges connecting A and V \A in this graph and in
the complete graph. The cut density is the product of this ratio and the total number of vertices,
10.

(c) Let φG denote the smallest possible density of a cut in G. We call a cut with density φG, the
sparsest cut in G. What is the density of the cut induced by A = {4, 5, 6, 7, 8}? Would you guess
that this is the sparsest cut in our example graph?

The questions below will be based on the following graph H:

1 2

34

5 6

7

89

Q1 Calculate the density of the cut in H induced by A = {1, 2, 3, 4}.

Q2 Below is an algorithm that uses the Fiedler vector w to break a graph into its two main clusters.
Since it uses eigenvalues and vectors, the method is called spectral clustering.

i. Sort the components of w in descending order so that wi1 ≥ wi2 ≥ · · · ≥ win . In our running
example, Julia says that λ2 = 0.2984 and the Fielder vector w = (0.23, 0.33, 0.33,−0.33,−0.33,−0.23,−0.33,−0.33, 0.33, 0.33).
One way to sort the components of w is as

w2 ≥ w3 ≥ w9 ≥ w10 ≥ w1 ≥ w6 ≥ w4 ≥ w5 ≥ w7 ≥ w8.

When two components tie in value, you can break the tie as you wish.

ii. Let Ak := {i1, . . . , ik} for k = 1, . . . , n − 1. Among the cuts (Ak, V \Ak), output the one
with the smallest density. In the first example, A1 = {2}, A2 = {2, 3}, A3 = {2, 3, 9}, A4 =
{2, 3, 9, 10} etc. The cut (A4, V \A4) has density 10 4

4·6 = 5
3 . In our running example, what

is A5?

Calculate the Fiedler value λ2 and its eigenvector w for H using Julia (I would suggest just finding
the Laplacian of the graph H and typing it directly into Julia. Coding graphs into Julia is more
involved). Then sort the components of w and find all the sets A1, . . . , A8. Pick one Ai from your
list such that the density of the cut it induces has a chance to be sparser than the cut induced by
{1, 2, 3, 4}. Compute the density of this cut.

The following theorem says how well our algorithm can do.

Theorem 13.4.2. The following hold for G:

(a) φG ≥ λ2.

(b) The above algorithm always finds a cut of density at most 4
√
dGλ2 where dG is the largest degree

of a vertex in G.
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Q3 Argue that this theorem is saying that λ2 ≤ φG ≤ 4
√
dGλ2. (Caution: The sparsest cut output

by the algorithm may not be the overall sparsest cut in G. How does the smallest cut density
obtained from the algorithm compare to φG?)
What are these bounds for φG in H? What are these bounds for our running example?

Call a vector x non-constant if it is not a multiple of 1 = (1, 1, . . . , 1). For x = (x1, . . . , xn), define
the function

Q(x) = n ·
∑
{i,j}∈E(G)(xi − xj)2∑
1≤i<j≤n(xi − xj)2

Note that the numerator is x>LGx and the denominator is the same quadratic function for the
complete graph on n vertices, i.e., x>LKnx.

Q4 For a subset A ⊆ V , let cA be the vector in Rn with ith coordinate equal to 1 if i ∈ A and 0
otherwise. This is called the characteristic vector of A. In our running example, c{4,5,6,7,8} =

(0, 0, 0, 1, 1, 1, 1, 1, 0, 0), and Q((0, 0, 0, 1, 1, 1, 1, 1, 0, 0)) = 2
5 = φ({4, 5, 6, 7, 8}, {0, 1, 2, 3, 9, 10}).

Compute the characteristic vector cA for A = {1, 2, 3, 4} in H, and check that for this A, Q(cA)
is exactly the density of the cut induced by A.

Q5 Argue that φG is the minimum of Q(x) as x varies over all cA. If you were to use this method to
find φG how many cA’s would you need to compute in the graph G shown above? Hopefully you
see that this is not a very practical way to find φG.

9. Spectral Clustering - Part 2* In the remaining exercises, we will prove the first part of the theorem
which says that the smallest density of a cut in G is at least as big as the Fiedler value.

Instead of finding the minimum of Q(x) over all cA’s, let’s be less ambitious and relax the problem and
minimize Q(x) over all non-constant vectors x. Call the minimum value µ. This procedure is called
a relaxation since now we are enlarging the allowable x we can plug into Q from characteristic vectors
cA to all non-constant vectors. This means the region we are minimizing over has become larger, more
relaxed.

Q6 Argue that µ ≤ φG. Hint: if we minimize over a larger set than what we are supposed to, what
happens to the minimum value of Q? Does it become smaller or bigger?

We’ll now show that µ = λ2 completing the first part of the theorem.

Q7 Show that Q(x) = Q(x + t1) for all t ∈ R. This means that if we start at x and move in direction
1 or −1, the value of Q does not change.

Q8 Therefore, argue that
µ = min{Q(x) : x ∈ Rn\{0}, 1>x = 0}.

This is saying that µ is the minimum value of Q(x) among the non-zero vectors x in the orthogonal
complement of 1. (Hint: Any x ∈ Rn can be written as the sum of an element of span(1) and
1⊥. Apply Q to this sum and use the previous result.)

Q9 We are now going to think about the minimization problem in Q8.

i. Argue that the Laplacian of the complete graph Kn is nIn− Jn where Jn is the n×n matrix
filled with 1.

ii. Use the fact that 1>x = 0 to argue that Jnx = 0.

iii. Now show that the denominator of Q(x) is n‖x‖2.
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iv. Therefore, what is the relationship between Q(x) and Q(αx) for any non-zero α ∈ R?

v. Using the above, argue that

µ = min{x>LGx : ‖x‖ = 1, 1>x = 0}

Q10 To finish we’ll argue that µ = λ2. Note that this is giving you a new interpretation of λ2.

Let v1, . . . ,vn be a set of orthonormal eigenvectors of LG corresponding to the eigenvalues λ1 =
0, λ2, . . . , λn in increasing order. Recall that v1 is a multiple of 1.

i. Show that if 1>x = 0, then x is a linear combination of v2, . . . ,vn.

ii. Since ‖x‖ = 1, argue that x =
∑n
i=2 αivi with

∑n
i=2 α

2
i = 1.

iii. Using x =
∑n
i=2 αivi, expand x>LGx and get that

x>LGx = α2
2λ2 + α2

3λ3 + . . .+ α2
nλn.

.

iv. Now argue that α2
2λ2 +α2

3λ3 + . . .+α2
nλn ≥ (

∑n
i=2 α

2
i )λ2, and from this conclude that λ2 ≤ µ.

v. Now show that µ ≤ λ2.
Hint: how can you choose α2, α3, . . . , αn that will give you an x for which x>LGx = λ2?

vi. Conclude that λ2 = µ.

141



Chapter 14

The Singular Value Decomposition

We now spend a considerable amount of our efforts understanding the singular value decomposition of a
matrix. In doing so, we will see that everything we have learned up to this point will be necessary. We will
begin with some motivation , followed by the mechanics and inner workings of the definition. After that,
we move onto the geometry of the singular value decomposition before finishing off with an introduction to
matrix norms and rank one approximations to a matrix.

14.1 Motivation

We motivate the singular value decomposition with one geometric fact.

Given any A ∈ Rm×n the image of the unit n-sphere under A is a hyperellipse

Let’s try to understand this statement. We let

Sn−1 = {x ∈ Rn : x2
1 + x2

2 + · · ·+ x2
n}

denote the unit sphere in Rn, otherwise known as the unit n sphere. When we say hyperellipse, we mean an
m-dimensional generalization of an ellipse. It is defined as the surface obtained by stretching the unit sphere
in Rm by some factors σ1, σ2, . . . , σm (some possibly zero) in orthogonal directions u1,u2, . . . ,um ∈ Rm.

We can see what this looks like in low dimensional cases. The unit sphere in R2 (this is the unit 2-sphere
which we denote by S1) is just the unit circle and a hyperellipse in R2 is just a usual ellipse. If A ∈ R2×2

has full rank, the picture associated to A is
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The u′s,v′s, and σ′is are all encapsulated in the singular value decomposition of A. The singular values
are the (positive) numbers σi and they tell us the lengths of the axes of the hyperellipse.

Without further ado, we can now define the central object of interest.

14.2 The Mechanics of the Singular Value Decomposition

Definition 14.2.1. Given A ∈ Rm×n with rank(A) = r, the singular value decomposition of A is the
factorization

A = UΣV >

where

• U ∈ Rm×m
U =

[
u1 · · · ur ur+1 · · · um

]
where {u1, . . . ,ur} form an orthonormal basis for Col(A) and {ur+1, . . . ,um} forms an orthonormal
basis for Null(A>). Recall that Col(A) and Null(A>) are orthogonal complements, which explains why
U is orthogonal.

• V ∈ Rn×n
V =

[
v1 · · · vr vr+1 · · · vn

]
where {v1, . . . ,vr} form an orthonormal basis for Row(A) and {vr+1, · · · ,vn} forms an orthonormal
basis for Null(A). Recall that Row(A) and Null(A) are orthogonal complements, which explains why
V is orthogonal.

• Σ ∈ Rm×n

Σ =



σ1

. . .

σr
0

. . .

0


• Av1 = σ1u1, Av2 = σ2u2, . . . Avr = σrvr with σ1 ≥ σ2 ≥ · · ·σr > 0

•
A = σ1u1v

>
1 + · · ·+ σrurv

>
r

This last equation is known as the rank one decomposition of A. This deserves a section of its own
and will be covered in detail soon.

In practice, we need a better sense of all the objects involved in this definition. We will first want to find
the singular values σi and we unravel them by using the definition.

Looking at A>A and noting that A>A is symmetric (in fact positive semidefinite) we see that

A>A = V Σ> U>U︸ ︷︷ ︸
=I

ΣV > = V Σ>ΣV >
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Note that

Σ>Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈ Rn×n

Since A>A is symmetric, we must have V Σ>ΣV > as it’s orthogonal diagonalization. This allows us to
conclude two things (from uniqueness of orthogonal diagonalizations).

1. Σ>Σ is the diagonal matrix of eigenvalues of A>A.

2. V is the orthogonal matrix whose columns are the eigenvectors of A>A.

Combining these two facts tells us that

A>Avi = σ2
i vi

We can now define the singular values.

Definition 14.2.2. Given A ∈ Rm×n, the singular values of A are the square roots of (non-zero) eigen-
values of A>A. We will soon see that these numbers are also the square roots of (non-zero) eigenvalues of
AA>.

Warning: When one says the word “singular values” the context should always be taken into account.
Singular values are most often meant to be non-zero numbers but in some settings it makes sense to say the
word singular value and have it pertain to square roots of all eigenvalues of A>A, non-zero or not. You
will likely run into this issue several times and when you do, always take the context into account and think
about wether or not allowing zero singular values will mess up the context of the setting in question.

All of this information allows us to compute the σi and the vi, so it remains to find the ui. This is where
the equation

Avi = σiui

comes to the rescue. It tells us that

ui =
Avi
σi

for all i = 1, 2, . . . , r

Note that this allows us to find r of the ui vectors. The remaining ones must be found via direct null space
computations.
We can use this fact to verify that ui ⊥ uj for i 6= j as follows.

u>i uj =
(Avi
σi

)>(Avj
σj

)
=

v>i (A>Avj)

σiσj
=

v>i (σ2
jvj)

σiσj
=
σjv

>
i vj
σi

= 0

Note that the last equality follows from the fact that the columns of V form an orthonormal basis.

This summarizes the main points of singular value decomposition computations so we now illustrate the
details with an example.

Example 14.2.3. Consider the following rank 2 matrix

A =

[
3 0
4 5

]
Finding the σi’s and the v’s first we see that

A>A =

[
25 20
20 25

]
with λ1 = 45 = σ2

1 , λ2 = 5 = σ2
2 and v1 =

1√
2

[
1
1

]
,v2 =

1√
2

[
−1
1

]
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This implies that

V =
1√
2

[
1 −1
1 1

]
and Σ =

[√
45 0

0
√

5

]
We now use the equation Avi = σiui to find the ui. We have

Av1 =

[
3 0
4 5

] [
1/
√

2

1/
√

2

]
=

[
3/
√

2

9/
√

2

]
=

3√
2

[
1
3

]
=
√

45
1√
10

[
1
3

]

so u1 = 1√
10

[
1
3

]
.

Av2 =

[
3 0
4 5

] [
−1/
√

2

1/
√

2

]
=

[
−3/
√

2

1/
√

2

]
=
√

5
1√
10

[
−3
1

]
so u2 = 1√

10

[
−3
1

]
. It is important to note that since rank(A) = 2 we did not have to compute any vectors

from Null(A) or Null(A>). In more general scenarios, bases for these subspaces will have to be computed
and normalized in order to obtain the matrices V and U .

We now can conclude that

U =
1√
10

[
1 −3
3 1

]
hence the singular value decomposition is

A =

[
3 0
4 5

]
=

1√
10

[
1 −3
3 1

] [√
45 0

0
√

5

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
Before ending this section, we point out a different way to understand the matrix U .

Earlier in this chapter, we computed A>A and uncovered the inner workings of the matrices V and Σ in
the process. Now lets try and analyze AA>. Using the fact that Avi = σiui we have that

AA>ui = AA>
(Avi
σi

)
=
A
(
A>Avi

)
σi

=
Aσ2

i vi
σi

= σiAvi = σ2
i ui

hence the ui are eigenvectors of AA> with eigenvalues σ2
i .

Lastly, we can also see that the ui are indeed unit vectors.

||ui||2 = u>i uj =
(Avi
σi

)>(Avi
σi

)
=

v>i A
>Avi
σ2
i

= v>i vi = ||vi||2 = 1

hence ||ui|| = 1.
We finish this section by pointing out one remaining subtlety. We have now seen that the singular values

are square roots of eigenvalues of both A>A and AA>. If A is an m × n matrix, with m 6= n, then A>A
and AA> have different sizes, hence different numbers of eigenvalues. This poses potential confusion, and
to avoid it, we note that the number of non-zero eigenvalues of both are the same, since this number is
equal to the rank. There will potentially be a different multiplicity of 0 eigenvalues of A>A and AA> but
this does not pose any problems to the mechanics of what is happening.
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14.3 The Geometry of the Singular Value Decomposition

Let’s start off with a quick refresher of the main geometric notions.
Let the unit n sphere be given by

Sn−1 = {x ∈ Rn : x1
1 + x1

2 + · · ·+ x2
n = 1}

and the unit n ball by
Bn = {x ∈ Rn : x2

1 + x2
2 + · · ·+ x2

n ≤ 1}

The fundamental fact that motivated the singular value decomposition was the following.

The image of Sn under A ∈ Rm×n is a hyperellipse
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Ellipses and hyperellipses are defined by specific equations. A hyperellipse in R2 is just a normal ellipse
and is given by the equation

x2
1

a
+
x2

2

b
= 1

Taking a = 4 and b = 2 we obtain the example

We call the values
√
a and

√
b the length of the semiaxes, and the axes of the ellipse themselves are

known as the semiaxes.

A (general) hyperellipse in Rn is given by

y2
1

σ2
1

+
y2

2

σ2
2

+ · · ·+ y2
n

σ2
n

= 1

An example of a hyperellipse in R3 would look like

Example 14.3.1. Consider the singular value decomposition of the following matrix

A =

[
2 0
0 3

]
=

[
0 1
1 0

] [
3 0
0 2

] [
0 1
1 0

]
Thinking of A as a linear map A : R2 → R2 sending x 7→ Ax we can apply A to the unit sphere in the
domain (this is S1) with domain basis v1 = e2 and v2 = e1 we see that it maps S1 to the hyperellipse in R2

with semiaxes given by σ1u1 = 3e2 and σ2u2 = 2e1. The vectors u1 and u2 form an orthonormal basis for
R2 and the lengths of the semiaxes are given by the singular values of A.
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This example illustrates the general phenomenon that happens with any matrix. We can summarize
everything up to this point with a sequence of facts.

Let A ∈ Rm×n and assume rank(A) = r. Then

1. A(Sn−1) is a hyperellipse in Rm of dimension r.

2. The semiaxes of the image hyperellipse are σ1u1, σ2u2, . . . , σrur.

3. The singular values are the lengths of the semiaxes of the image hyperellipse.

4. The vectors u1, . . . ,ur are the unit vectors along the semiaxes of the image hyperellipse.

5. The vectors v1, . . . ,vr map to σ1u1, σ2u2, . . . , σrur under A.

The rank of the given matrix determines the dimension of the image hyperellipse as we can see in the
following pictures.

We can also see that the geometric information agrees with the algebraic picture. In particular, we have

• u1, . . . ,ur are orthonormal vectors in Range(A).

• σ1, . . . , σr > 0 because they are lengths of semiaxes.

• v1, . . . ,vn are orthonormal vectors in the domain (hence live on the unit sphere Sn−1).

Our next job will be to understand the singular value decomposition of A as a linear map. Since it is given
as a factorization (A = UΣV >), we can view the linear map associated to A as a composition of 3 linear
maps whose net composition has the same effect as A. Since U and V are orthogonal (hence invertible), they
are change of basis matrices. As a result of this observation, we will find that the geometry of the singular
value decomposition is best described using the language of change of bases. First, some facts concerning
orthogonal matrices.

Proposition 14.3.2. If Q ∈ Rn×n is an orthogonal matrix, then Q preserves dot products (hence preserves
angles between vectors and lengths of vectors).
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Proof. If v,w ∈ Rn, we show that
v>w = (Qv)>(Qw)

Observe that
(Qv)>(Qw) = v>Q>Qw = v>Iw = v>w

This also allows us to see that Q preserves lengths since

||Qv||2 = (Qv)>(Qv) = v>Q>Qv = v>v = ||v||2

We can conclude from this that orthogonal matrices act as “rotations”. We write this in quotation marks
because they ae not identically rotations as we know them, but for the sake of understanding the geometry,
we may think of them sinply as rotating space.

Let’s now look back at the singular value decomposition, keeping in mind that U and V are orthogonal.
By viewing the factorization as a composition of linear maps, two of which are “rotations”, we can determine
where a vector goes by seeing what each individual matrix does to that vector. That is

A = UΣV > =⇒ Ax = U(Σ(V >x))

The following picture summaries the composition

We now illustrate the details of this with a series of important statements, the first of which does not
need to be thought of as a formal proposition but will serve as a guide for our change of basis perspective.

Proposition 14.3.3. Let A = UΣV > ∈ Rm×n. If we take {v1, . . . , vn} and {u1, . . . ,um} as orthonormal
bases of the domain and codomain of A, respectively, then A behaves like the matrix Σ.
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This can be explained by the following picture

x︸︷︷︸
(In standard basis)

V >−−→ V >x︸ ︷︷ ︸
(In V basis, still in Rn)

Σ−→ ΣV >x︸ ︷︷ ︸
(In U basis, now in Rm)

U−→ UΣV >x︸ ︷︷ ︸
(Back to standard basis, now in Rn)

With this idea in mind, we can now prove the motivating statement of the chapter.

Proposition 14.3.4. Let A ∈ Rm×n and let Sn−1 be the unit n sphere in the domain of A. Then A(Sn−1)
is always a hyperellipse.

Proof. First, assume without loss of generality that rank(A) = n. Pick any vector x ∈ Sn−1 and write x in
the V basis (rather than the standard basis), so that

x = x1v1 + x2v2 + · · ·+ xnvn

where
x2

1 + x2
2 + · · ·+ x2

n = 1

Note that the last condition is true because x ∈ Sn−1 and will show up again.
Next, look at the image of x under A and label it y, so Ax = y. We get that

y = Ax = A(x1v1 + x2v2 + · · ·+ xnvn) = x1σ1u1 + · · ·+ xnσnun

since Avi = σiui. Next, we relabel our coefficients and write

y =

n∑
i=1

xiσiui =

n∑
i=1

yiui

to ease notation. Now, we write y in the U basis,and see that

[y]BU =

x1σ1

...
xnσn

 =

y1

...
yn


Now we have obtained the image of the vector x in the U basis, so it remains to verify that the coordinates

of y (the yi) satisfy the equation of a hyperellipse. Since yi = xiσi we have xi = yi
σi

hence

(
y1

σ1
)2 + · · ·+ (

yn
σn

)2 = x2
1 + · · ·+ x2

n = 1

We can now conclude that y = Ax is a vector on the hyperellipse with semiaxies of lengths σ1, . . . , σn in
directions u1, . . . ,un.

We finish off the section with one more useful fact concerning singular values. We will need a lemma to
finish the proof of our useful proposition so we state and prove the lemma here.

Lemma 14.3.5. Let A ∈ Rm×n and let B ∈ Rn×n be invertible, then rank(A) = rank(AB).

Proof. Recall that rank(AB) ≤ min{rank(A), rank(B)} and suppose that B−1 exists. Then rank(A) =
rank((AB)B−1) ≤ rank(AB) since the rank of B−1 is as big as possible. We can then conclude that

rank(A) = rank((AB)B−1) ≤ rank(AB) ≤ min{rank(A), rank(B)} = rank(A)

This implies that
rank(A) ≤ rank(AB) ≤ rank(A)

hence we must have rank(A) = rank(AB).
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Now we can state and prove the proposition.

Proposition 14.3.6. rank(A) is equal to the number of (non-zero) singular values of A, counting multiplic-
ities.

Proof. Given A = UΣV >, begin by observing that U and V > have full rank and that rank(Σ) = r. Also
notice that UΣ has r linearly independent rows and columns hence rank(UΣ) = r (you should verify this for
yourself). Now, looking at the product (UΣ)V > and noting that V > is invertible, we can apply the above
lemma and conclude that

rank(A) = rank(UΣV >) = rank(UΣ) = r

This proposition gives a nice way of computing the rank of a matrix in practice.

1. Compute the singular value decomposition (in Julia).

2. If some singular values are VERY close to 0, then they are 0 (this happens because of rounding errors
in the computer).

3. rank(A) = the number of nonzero singular values of A.

We finish off this section with a small additional notion that may come up later, namely the polar
decomposition of a square matrix.

Let A ∈ Rn×n. Observe that we can use the singular value decomposition to write A as

A = UΣV > = (UV >)(V ΣV >)

Noting that UV > is orthogonal and V ΣV > is positive semidefinite, we can conclude that any square matrix
can be written as the product of an othogonal matrix with a positive semidefinite matrix. This factorization
is known as the polar decomposition of A. This will come up in some exercises but we will leave it at
the definition for now.

14.4 The Reduced Singular Value Decomposition

We now begin covering the preliminary ideas needed to understand how one finds low rank matrices that are
“close” to a given matrix. This is one of the central ideas behind princpal component analysis in addition
to many other notions related to the singular value composition.

Thus far, we have seen that for any matrix A of rank r, we have the singular values of A as the square
roots of σ2

1 , . . . , σ
2
r , which are eigenvalues of AA> and A>A (the remaining eigenvalues are 0). The reduced

singular value decomposition is a different factorization of A which captures most of the data that A holds,
without adding additional computational hurdles.

Definition 14.4.1. Given

A =
[
u1 · · · ur ur+1 · · · um

]
Σ
[
v1 · · · vr vr+1 · · · vn

]>
the reduced singular value decomposition of A is the factorization

A =
[
u1 · · · ur

] σ1

. . .

σr

 [v1 · · · vr
]>

= Û Σ̂V̂ >

We call the vectors u1, · · · ,ur the left singular vectors of A and similarly, the vectors v1, · · · ,vr are
called the right singular vectors of A.

151



Note that in contrast to the (full) singular value decomposition, the reduced version has Σ̂ as a square
diagonal matrix and Û and V̂ as rectangular matrices, if A is not square.

Example 14.4.2. Let A be the following matrix

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


Note that the only eigenvalue of A is 0 with AM(0) = 4 and GM(0) = 1. Moreover, rank(A) = 3 and A is
not invertible. Computing the singular value decomposition of A we see that

A>A =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9


hence σ1 = 3, σ2 = 2, σ3 = 1, and σ4 = 0. The respective eigenvectors of A>A are

v1 =


0
0
0
1

 ,v2 =


0
0
1
0

 ,v3 =


0
1
0
0

 , and v4 =


1
0
0
0


hence

V > =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


Next, we use the fact that Avi = σiui for i = 1, 2, 3 to find the first three columns of U . They are

u1 =


0
0
1
0

 ,u2 =


0
1
0
0

 , and u3 =


1
0
0
0

. The last step is to find the one orthonormal basis vector for Null(A>),

which by inspection is u4 =


0
0
0
1

. This rounds out the computation, giving us the matrix U hence the full

singular value decomposition is

A =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


︸ ︷︷ ︸

U


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

Σ


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

V >

Computing the reduced singular value decomposition reduces to eliminating 0 singular values and any
vectors coming from null spaces. This yields

0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >
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Next, we use this to approximate the matrix A. In order to understand approximations to a matrix, we
must define matrix norms which give us a notion of “closeness” in Rm×n.

14.5 Matrix Norms

We define matrix norms in terms of vector norms, of which there are many.

Definition 14.5.1. Let x =

x1

...
xn

. The 1-norm of x is the real number

||x||1 = |x1|+ |x2|+ · · ·+ |xn|

The 2-norm of x is the real number

||x||2 =
√
x2

1 + · · ·+ x2
n

You may now realize the the 2-norm of a vector is the usual norm we have known all along. This is the
one we care about the most, as will also be the case with matrices. We now define matrix norms in terms of
vector norms.

Definition 14.5.2. Let A = (aij) ∈ Rm×n The ∞- norm of A is the maximal row sum, also defined as the
real number

||A||∞ = max
i=1,...,n

{ n∑
j=1

|aij |
}

The 1- norm of A is the maximal column sum, also defined as the real number

||A||1 = max
j=1,...,m

{ m∑
i=1

|aij |
}

The 2- norm of A is defined to be the real number

||A||2 = max
x 6=0

{ ||Ax||2
||x||2

}
||A||2 is the only matrix norm we care about in this course. The observation that for any real number α

we have that
||αx|| = |α|||x||

implies that
||Aαx||2
||αx||2

=
|α|||Ax||2
|α|||x||2

=
||Ax||2
||x||2

hence we can actually define this norm to be

||A||2 = max
||x||2=1

{
||Ax||2

}
In words, this means that the 2-norm of the matrix A is the maximum stretch that A applies to a unit
vector.

This maximum stretch is none other than the largest singular value of A!!!
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That is, if

A =
[
u1 · · · ur

] σ1

. . .

σr

 [v1 · · · vr
]>

= Û Σ̂V̂ >

then ||A||2 = σ1.
Before digging deeper into how we use this norm to approximate A we note two facts about matrix norms.

||A+B||2 ≤ ||A||2 + ||B||2 and ||AB||2 ≤ ||A||2||B||2

14.6 Rank One Decompositions

Recall that the singular value decomposition of A (with rank(A) = r) allows one to write A as a sum of r
rank 1 matrices. [

u1 · · · ur
] σ1

. . .

σr


v>1

...
v>r

 = σ1u1v
>
1 + · · ·+ σrurv

>
r

In general, there are many ways of writing a matrix as the sum of rank one matrices but the one we have
above is special and allows us to define lower rank approximations to A.

Definition 14.6.1. Let rank(A) = r. For k < r, define the rank k approximation to A as the kth partial
sum

Ak = σ1u1v
>
1 + · · ·σkukv>k =

k∑
i=1

σiuiv
>
i

Note that the case where k = r is what we call the rank one decomposition whereas k < r gives rise to
the rank k approximation.

The word approximation is meant to imply that the object of interest is “close” to A. When we say the
word close, we mean close in the 2-norm. This is made precise with the following theorem due to Eckart and
Young.

Theorem 14.6.2. The closest rank k matrix (in the 2-norm) to A is the matrix

Ak =

k∑
i=1

σiuiv
>
i

More formally, if B is any m× n matrix of rank k, then

||A−B||2 ≥ ||A−Ak|| = σk+1

We do not prove this theorem here but we will show that ||A−Ak|| = σk+1. Since the singular values of
A are ordered, this tells us that Ak gets closer to A as k gets closer to r.

To see why this is true, we will need a lemma that, as stated, is simple but has immense use in practice.

Lemma 14.6.3.

A = B ↔ Av = Bv ∀v in the domain↔ Aui = Bui for all basis vectors ui
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Proof. It is easy to see that if A = B then Av = Bv for all domain vectors v, since A and B are exactly the
same matrix. On the other hand, if we assume that Av = Bv for all vectors v, then in particular, we have
that Aei = Bei for all standard basis vectors ei of the domain. Since Aei is the ith column of A and Bei is
the ith column of B, we can conclude that the ith column of A and B are equal for all i, hence A and B are
the same matrix. We leave the proof of the last equivalence (the one for basis vectors) to the reader. You
may find it useful in homework problems but if you use it you must argue why it is true.

Now onto the main idea.

Proposition 14.6.4.
||A−Ak||2 = σk+1

Proof. Using the result about equality of matrices from the lemma above, we can work backwards from a
certain sum of rank one matrices to conclude that

A−Ak =

r∑
i=1

σiuiv
>
i −

k∑
i=1

σiuiv
>
i =

r∑
i=k+1

σiuiv
>
i =

[
uk+1 · · · ur

] σk+1

. . .

σr


v>k+1

...
v>r


Note that the lemma above was used to obtain the last equality. Looking at the final product of matrices,
we are left with none other than the singular value decomposition of the matrix A − Ak, thus the value
||A−Ak||2 is the largest singular value of this matrix, which is σk+1.

Before moving onto the next section, lets look back at example 14.4.2 in the context of rank one approx-
imations.

Example 14.6.5. We computed the reduced singular value decomposition in the previous example and
obtained

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 =


0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û


3 0 0
0 2 0
0 0 1
0 0 0


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >

= 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

+


1
0
0
0

 [0 1 0 0
]

The closest rank 1 matrix to A is

A1 = 3


0
0
1
0

 [0 0 0 1
]

=


0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0


This is a linear map from R4 to R4 of rank 1 so the image of the unit sphere in R4 is a one dimensional
hyperellipse which looks like
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The closest rank 2 matrix to A is

A2 = 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

=


0 0 0 0
0 0 2 0
0 0 0 3
0 0 0 0


This is a linear map from R4 to R4 of rank 2 so the image of the unit sphere in R4 is a two dimensional
hyperellipse which looks like

The full matrix A is a rank 3 linear map from R4 to R4 and the image of the unit sphere in R4 is the 3
dimensional hyperellipse which looks like
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Geometrically, we can see that the higher rank approximations build up the image hyperellipse one
semiaxis at a time.

14.7 Best Fit k-Planes

We begin this section with a general question. Suppose we obtain m data points a1, . . . ,an ∈ Rn and we
input them into a matrix as the rows

A =

a>1
...

a>n

 ∈ Rm×n

Question 14.7.1. What is the “best fit k-dimensional subspace” to the data points a1, . . . ,an?

Let’s think about the best fit line l. This is the case when k = 1. The best fit line is the line that
minimizes the sum of squared distances of a1, . . . ,am to the line.

We can see that d2
i = ||ai||2−||pi||2, where pi = projlai is the (orthogonal) projection of ai onto the line

l. From this we can conclude that in order to minimize the value
∑
d2
i , we want to maximize

∑
||pi||2. This
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value is the sum of squares of lengths of the projections of a1, . . . ,am onto the best fit line, l. This leads us
to our second question.

Question 14.7.2. Which line maximizes the value
∑
||pi||2?

Let’s begin by considering a unit vector v on the best fit line l (note that every line has a unit vector
lying on it). Suppose that ai and v have θ radians between them and consider the dot product of ai and v.
We see that

a>i v = ||ai||||v|| cos θ = ||ai|| cos θ

Using our old friend SOHCAHTOA, we can conclude that cos θ = ||pi||
||ai|| which implies that

|a>i v| = ||ai|| cos θ = ||pi||

We can then conclude that ||pi||2 = |a>i v|2 Recalling that the ai were the rows of the matrix A, we can

connect the two ideas and see that since A =

a>1
...

a>n

 we have

Av =

a>1
...

a>n

v =

a>1 v
...

a>nv


hence

m∑
i=1

||pi||2 = ||Av||2

This translates our original question to a new one.

Question 14.7.3. Which unit vector v ∈ Rn maximizes the value ||Av||2?

This is now something that is fresh and familiar. Recalling that ||A||2 = max||x||2=1

{
||Ax||2

}
we can

conclude that the choice of v which maximizes this value is the first right singular vector v1! SinceAvi = σiui,
we can see that

||A||2 = max
||x||2=1

{
||Ax||2

}
= σ1 = ||Av1|| = ||σ1u1|| = |σ1|||u1||

We can summarize all of this with a proposition.

Proposition 14.7.4. If A =

a>1
...

a>n

 ∈ Rm×n, then the best fit line to the rows of A is Span{v1}, where v1

is the first right singular vector of A.

We leave out the details of the proof but state the all important generalization of this idea.

Theorem 14.7.5. Let rank(A) = r. For 1 ≤ k ≤ r, let Vk = Span{v1, . . . , vk} where the vi denote the right
singular vectors of A. Then the best fit k-plane to the rows of A is the subspace Vk.

By transposing A, we can obtain a similar theorem concerning the columns of A. Observe that if
A = UΣV > then A> = V Σ>U>. Since the rows of A> are the columns of A, we can directly apply the
previous theorem to conclude the following.

Theorem 14.7.6. Let Uk = Span{u1, . . . ,uk} where ui denote the left singular vectors of A. Then the best
fit k-plane to the columns of A is the subspace Uk.
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We should pause for a moment and let this sink it. We have seen many reasons why the singular value
decomposition of A is important. The singular values alone tell us a tremendous amount of information, but
we now have more. Mainly that the left and right singular vectors give the best fit k-dimensional subspaces to
the columns (resp. rows) of A. Before returning to example 14.4.2, we give one more important proposition
concerning the relationship between the best fit k-planes and the rank one decomposition of A.

Proposition 14.7.7. Suppose A =
∑r
i=1 σiuiv

>
i and Ak =

∑k
i=1 σiuiv

>
i . The rows of the matrix Ak are

the projections of the rows of A onto the subspace Vk = Span{v1, . . . , vk}

Proof. Let a be a row of A. Recall that the vi are mutually orthogonal unit vectors which form a basis for
Rn, hence there exist scalars ai such that

a = a1v1 + · · ·+ anvn

Given Vk = Span{v1, . . . ,vk} we know that V ⊥k = Span{vk+1, . . . ,vn} so that

a = aVk + aV ⊥k

where aVk = a1v1 + · · ·+akvk and aV ⊥k = ak+1vk+1 + · · ·+anvn. In this way, we can think of the projection
of a onto Vk as the vector aVk .

Now, along these lines, we know that the projection of a onto V1 is a1v
>
1 (we are writing the vector

v1 as a row vector because we are projecting a row vector onto V1). We can extract the coefficient a1 by
computing a dot product. That is

a>v1 = (a1v1 + · · ·+ anvn)>v1 = a1

hence
projV1

a = (a>v1)v>1 = a1v
>
1

Along these same lines, we get that a2 = a>v2 so that

projV2
a = (a>v1)v>1 + (a>v2)v>2

and in general we have

projVka =

k∑
i=1

(a>vi)v
>
i

Now lets look at the matrix whose rows are the projections of the rows of A (the ai) onto Vk. We have
explicit formulas for the projections hence can write this matrix out as

∑k
i=1(a>1 vi)v

>
i∑k

i=1(a>2 vi)v
>
i

...∑k
i=1(a>mvi)v

>
i

 =

k∑
i=1

(
Avi

)
v>i =

k∑
i=1

(
σiui

)
v>i =

k∑
i=1

σiuiv
>
i = Ak

This is none other than the rank k approximation of A, finishing the proof.

Now lets return to example 14.4.2 and see these projections in action.

Example 14.7.8. Thus far we have computed

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 =


0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >
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= 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

+


1
0
0
0

 [0 1 0 0
]

Now lets look at the rows of A. They are (written as columns)

a1 =


0
1
0
0

 , a2 =


0
0
2
0

 , a3 =


0
0
0
3

 , a4 =


0
0
0
0


Even though the rows of A are vectors in R4, none of the vectors have non-zero fourth coordinate so we can
associate a picture with these vectors.

Looking at the rows of

A1 = σ1u1v
>
1 = 3


0
0
1
0

 [0 0 0 1
]

=


0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0


we see the proposition in action.

a1 and a2 get projected to 0 (see picture) whereas a3 gets projected to itself because it is already on the
best fit line, V1 = Span{a3}.

Looking at the best fit plane V2 = Span
{

0
0
0
1

 ,


0
0
1
0

} = zw-plane. and the rows of

A2 = σ1u1v
>
1 + σ2u2v

>
2 = 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

=


0 0 0 0
0 0 2 0
0 0 0 3
0 0 0 0
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we see that row 1 of A2 is 0 and a1 projects to 0. Moreover, a2 and a3 map to themselves because a2,a3 ∈ V2.
Summarized more succinctly, we have that the rows of A2 are the projections of a1,a2,a3,a4 onto V2.

We finish off the chapter with a description of principal component analysis.

14.8 Application: Principal Component Analysis

When modeling many real word systems, data points ai ∈ Rm are obtained and input as the columns (or
rows) of a matrix A =

[
a1 · · · an

]
∈ Rm×n. Once we have the matrix A, several steps are taken to obtain

what is known as the principal components.

1. First, the mean of each row is computed and subtracted from each row. This centers the data in the
sense that the average along every row is now 0, hence the “center” of the data points is the origin.

2. Then the singular value decomposition is computed, and the basis vectors for the best fit k-planes to

the columns, i.e. the vectors u1, . . . ,ur, are found (they are actually computed as eigenvectors of AA
>

n−1
for statistical reasons). The vectors u1,u2, . . . ,ur are called the principal components of the data
points.

The best fit lines, planes, and k-planes are the subspaces that most closely fit the data. There is much
more that can be said about the fitting of these data points, but in short, we can say that in many situations,
a large proportion of the variance in a data set is explained by the first several principal components. We
illustrate the general idea with an example, but then turn to a nice visual representation of a large data set.

Example 14.8.1. Suppose we have math scores and history scores of six students. Our data points are of
the form (xi, yi) where xi denotes the math score of student i and yi denotes the history score of student i.
Inputing some sample data into a matrix we have

A =

[
3 −4 7 1 −4 −3
7 −6 8 −1 −1 −7

]
Finding the principal components reduces to finding the eigenvectors of AA>

5 and these are

u1 =

[
.6
.8

]
and u2 =

[
.8
−.6

]
with respective singular values being σ1 =

√
57 and σ2 =

√
3. The first rank one piece of A is

√
57u1v

>
1 and

is much larger than the second piece
√

3u2v
>
2 . The leading left singular vector u1 gives the direction of the

line that most closely fits the data (the best fit line). Since σ1 is large relative to σ2, it means that a large
proportion of the variance in our data is explained by the first principal component.

In general, the power of principal component analysis is most easliy seen with large data sets. The
following website

https://setosa.io/ev/principal-component-analysis/

gives a nice illustration of this. If you rotate the second example data set, one can see that the most variance
among the data points can be seen along the first principal component, and less variance can be seen when
looking along different lines given by other right singular vectors.

We also mention that principal component analysis is central to the Netflix problem. For a great ex-
plination of this see

https://www.youtube.com/watch?v=8wLKuscyO9I
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14.9 Problem Set 6

1. (7.2 #2, #4, #5) Calculate the singular value decomposition (SVD) of the following matrices.

[
2 2
−1 1

]
,

[
1 1 0
0 1 1

]
,

[
1 1
3 3

]
,

−1 2
2 −4
0 0


In each case, draw a picture of the unit sphere in the domain and the hyperellipse that is its image in
the codomain, and mark the vectors vi and σiui in the sphere and hyperellipse.

2. (a) (7.2 #13) If A is a square invertible matrix then use the SVD of A to compute the SVD of A−1.
What are the singular values of A−1?

(b) (7.2 #14) If u1, . . . , un and v1, . . . , vn are orthonormal bases for Rn. Construct the matrix A such
that Av1 = u1, Av2 = u2, . . . , Avn = un using what you know about SVD.

(c) (7.2 #16) If A has orthogonal columns w1, . . . , wn of lengths σ1, . . . , σn. What is the SVD of A?

3. True/false and why? For the following questions, indicate wether they are true of false. If they are
true, argue why it is so and if they are false, indicate why or give a counterexample if possible. Note
that if an if and only if statement is true you will need to explain why both directions are true.

(a) Let A ∈ Rm×n. A and A> can have different singular values.

(b) Let A ∈ Rn×n. A is invertible if and only if 0 is not a singular value of A.

(c) Let A ∈ Rn×n. ||A~x|| = ||~x|| for all non-zero ~x ∈ Rn if and only if all singular values of A equal 1.

(d) If A,B ∈ Rn×n are similar matrices (recall that they are similar if there exists a matrix C such
that A = CBC−1) then every singular value of A is also a singular value of B.

(e) Let A1, A2 ∈ Rn×n be matrices of equal rank. A1 and A2 have the same singular values if and
only if there exist orthogonal matrices Q1, Q2 such that A1 = Q1A2Q2.

4. (a) Argue that for any two matrices A and B, rank(A+B) ≤ rank(A) + rank(B).

(b) Find examples of 2×2 matrices where rank(A+B) < rank(A)+rank(B) and where rank(A+B) =
rank(A) + rank(B).

5. (a) Check that [
a b
c d

] [
e f
g h

]
=

[
a
c

] [
e f

]
+

[
b
d

] [
g h

]
.

(b) Can you always find a decomposition of AB where A ∈ Rm×k and B ∈ Rk×n as a sum of rank
one matrices as above? If yes, what is the formula? Hint: To do this correctly, you will need to
check that the ij entry agrees on both sides.

(c) Use the SVD of the first and second matrices in problem (2) to express each matrix as a sum of
rank one matrices.

(d) Use the reduced SVD of an arbitrary matrix A ∈ Rm×n of rank r, to show that A can always be
written as a sum of exactly r rank 1 matrices.
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6. This problem explores the geometry of the SVD interpreted as a rotation + stretch + rotation (as in
Section 7.4 of Strang’s book). Draw figures at each step.

(a) Compute the SVD of the matrix A =

[
1 1
1 1

]
.

(b) Compute the image of the square in R2 with corners (1, 1), (1,−1), (−1, 1), (−1,−1) under the
linear transformation given by A.

(c) Compute the image of the square under the linear transformation V >. What is the geometric
relationship between the original square and the one you just got?

(d) Compute the image of the square from part (c) under the matrix Σ in the SVD.

(e) Compute the image of the answer in (d) under the linear transformation U . Does your answer
agree with what you computed in (b)?

(f) Track the point p = (1, 0) through the above transformations on the figures you drew: find (i)
coordinates of p in the V -basis, call it q. (ii) coordinates of Σq in the U basis and (iii) coordinates
of Σq in the standard basis. Do you get Ap?

7. Consider a rank one matrix M = uv> of size 5× 5. (This problem works for any size n× n.)

(a) Argue that M has at most one nonzero eigenvalue. Call it λ1.

(b) Check that λ1 = v>u and u is an eigenvector of M with eigenvalue λ1.

(c) Argue that M has exactly one nonzero singular value. Call it σ1.

(d) Argue that v is a singular vector of M by showing that it is an eigenvector of M>M .

(e) Using the above show that σ1 = ‖u‖‖v‖.
(f) Do you see a relationship between |λ1| and σ1?

8. Using the command svd(A) in Julia you can compute the SVD of

A =

1 1 0 0 0
0 1 1 0 1
1 2 1 0 1

 .
julia> using LinearAlgebra

julia> A = [1 1 0 0 0; 0 1 1 0 1; 1 2 1 0 1]

3Array{Int64,2}:

1 1 0 0 0

0 1 1 0 1

1 2 1 0 1

julia> svd(A)

SVD{Float64,Float64,Array{Float64,2}}

U factor:

3Array{Float64,2}:

-0.339287 0.742665 -0.57735

-0.473523 -0.665163 -0.57735

-0.81281 0.0775016 0.57735
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singular values:

3-element Array{Float64,1}:

3.253087102270064

1.1905563006612325

1.812986607347358e-16

Vt factor:

3Array{Float64,2}:

-0.354155 -0.749574 -0.395419 0.0 -0.395419

0.688894 0.195291 -0.493603 0.0 -0.493603

0.632456 -0.632456 0.316228 0.0 0.316228

What are the singular vectors u1, u2, . . . , v1, v2 . . . that you see in the above SVD? You can use these
labels in answering the following questions.

(a) What is the rank of A?

(b) Find an orthonormal basis for the rowspace of A and columnspace of A.

(c) Which singular vector(s) lie in the nullspace of A>?

(d) Are some of the above singular vectors in the nullspace of A? If yes, which ones? Do we get a
basis for the nullspace of A?

(e) Why is the fourth column of V > filled with zeros?

(f) Write down the rank one decomposition of A. How many rank one matrices are there in the
decomposition?

(g) What is the dimension of the unit ball and ellipsoid in the domain and codomain of the linear
transformation given by A such that the ellipsoid is the image of the ball.

(h) What are the semiaxes of the ellipsoid?

9. (7.3 #4) Consider the matrix

A =

1 −1 0 0
0 0 2 −2
1 1 −1 −1

 .
(a) Compute the best fitting line L and best fitting plane P to the four columns of A. Express L and

P as the span of vectors.

(b) Compute the rank one decomposition of A, and the rank one approximations A1 and A2.

(c) Check that the columns of A1 are the projections of the columns of A on L.

(d) Check that the third column of A2 is the projection of the third column of A on P .

(e) Compute the 2-norm of A−A1.

(f) Construct a rank one matrix B of your choice and the same size as A. Check that B is not closer
to A than A1.

10. (a) If A is a symmetric matrix of size n× n, argue that σi = |λi| for all i. Here σi is the ith singular
value of A and λi is the ith eigenvalue of A.

(b) If A is a psd matrix of size n × n then what is the relationship between its singular values and
eigenvalues? What is the SVD of A?
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(c) Use the SVD to argue that for any square matrix A of size n× n, |det(A)| = σ1σ2 · · ·σn.

11. (Rank one matrices in Rm×n) We saw in previous homework that matrices of the form uv> where
u and v are nonzero vectors have rank one. You also saw that if you add two rank one matrices you
get a matrix of rank at most two, and sometimes less than two. The following question explores more
in this direction.

(a) Argue using SVD that all rank one matrices of size m × n can be written as uv> for a vector
u ∈ Rm and v ∈ Rn.

(b) Consider the rank one decomposition of a matrix A ∈ Rm×n and let Ak be the partial sum of the
first k rank one matrices in this decomposition. What is the rank of A2? In general what is the
rank of Ak?

(c) Can a rank k matrix always be written as the sum of k rank one matrices? What would be your
algorithm for doing this?

12. (Rank one psd matrices in Rn×n) This exercise piggybacks on the previous one.

(a) Argue that all rank one psd matrices of size n × n can be written as bb> for a vector b ∈ Rn.
(Note that unlike in 2(a) you have just one vector b now.)

(b) Use SVD to argue that all n × n psd matrices of rank r can be written as a sum of r rank one
psd matrices in which all coefficients are positive. (Note: The word sum is intended to mean a
linear combination in which all coefficients are positive, or alternatively, something of the form
A1 + A2 + · · · + An where Ai are rank one matrices. The word sum is used to emphasize that
only “+” signs are used and any negatives are absorbed into the summands themselves)

(c) Compute the SVD of the symmetric matrix

B =

1 2 3
2 4 5
3 5 6

 .
(d) Do you see a connection between the SVD of B and the diagonalization of B?

(e) Is it possible to write B as a sum of rank one psd matrices? The word sum has the same intended
meaning as in part (b). Hint: you saw the relationship between σi and λi above.

(f) In general, can a symmetric matrix of rank r be written as a sum of r rank one psd matrices?
What is the difference (if any) with the result in (b)?

(g) Describe 3 × 3 psd matrices of rank 1 that have 0s and 1s on the diagonal. Hint: Use part (a)
to deduce what any rank one matrix looks like, then find necessary conditions for the diagonals
of your psd matrix to be 0 or 1. You do not need to explicitly give all matrices but you should
argue how many you could get (double counting is ok) and explain how you get them.

13. Polar decomposition of matrices and polar forms of complex numbers

We have seen that every complex number has the form a + ib. This allows us to think of complex
numbers as living in the complex plane where the number a+ ib corresponds to the vector (a, b).
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We have heard (and possibly seen) that any complex number alternatively has the form reiθ = cos θ+
i sin θ where r ≥ 0 is the length and 0 ≤ θ < 2π is the angle. This is more widely known as the polar
form of a complex number and completely describes the number in terms of it’s length and angle.

In this problem we will derive the polar form of a complex number and see that the polar decomposition
of a square matrix relates to the polar form of a complex number. Recall that given A ∈ Rn×n, the
polar decomposition of A is a factorization

A = RS

where R is an orthogonal matrix and S is a psd matrix.

(a) We can associate any complex number a+ bi, with a2 + b2 6= 0 to the matrix

A =

[
a −b
b a

]
Verify that multiplying and adding complex numbers is the same as multiplying and adding their
associated matrices.

(b) Recall the power series expansions of ex, sinx, and cosx given by

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · ·

Use these formulas to show that eiθ = cos θ + i sin θ. and conclude that any complex number of
length r has the form reiθ

(c) Setting a1 + ib1 = r1e
iθ and a2 + ib2 = r2e

iγ , determine what happens to the lengths and angles
of the respective complex numbers when you multiply them together. Finish by arguing that
multiplication of one complex number by another complex number is geometrically a stretch and
a rotation applied to the first one.
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(d) Use the SVD to compute the polar decomposition of the matrix A =

[
a −b
b a

]
and argue that this

matrix can be described as a “length” and an “angle”.

167



14. Two Distances*

What is the largest number of points in R2 such that any two of them have the same distance? Three
points are ok, we can put them at the vertices of an equilateral triangle, but there is no set of four
points for which all pairwise distances are the same. Do you see why?

What if we allow two possible distances? A regular pentagon has two distances among pairs of vertices:
all the diagonals have the same length and all the sides have the same length.

Figure 14.1: A regular pentagon

Question: What is the maximum number n of points in Rd such that all pairwise distances among
the points are one of two (positive) numbers?

It seems that n should depend on d, so better to write n(d) instead of n. The above examples are
maximal in the sense that n(2) = 3 and n(3) = 5. In this exercise we will show that n(d) ≤ 1

2 (d2+5d+4).

(a) Let the n points in Rd be p1, . . . ,pn, and the two allowed distances be a and b. We have that the
square of the distance between pi and pj is

‖pi − pj‖2 = (pi1 − pj1)2 + (pi2 − pj2)2 + · · ·+ (pid − pjd)2 ∈ {a2, b2}

Associate to each pi the function

fi : Rd → R, such that fi(x) = (‖x− pi‖2 − a2)(‖x− pi‖2 − b2)

where x = (x1, . . . , xd). Show that

fi(pj) =

{
0 for i 6= j
a2b2 for i = j

Hint: You might choose a few actual points pi in R2 or R3 and write out the function fi to get
a feel for this question.

(b) Consider the set V of all functions f : Rd → R. Show that V is a vector space but checking all
the requirements to be a vector space.
Hint: The sum of two functions, f1 + f2 is defined as (f1 + f2)(x) = f1(x) + f2(x). If f is a
function and α ∈ R, then αf is the function from Rd → R defined as (αf)(x) = α(f(x)).
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(c) Let W be the subspace of V spanned by the functions f1, . . . , fn that we defined before. Argue
that f1, . . . , fn form a basis of W , i.e., they are linearly independent functions in V .
Hint: Suppose they are not, then there is a some linear combination of them α1f1 + α2f2 +
· · ·+ αnfn = 0 where 0 is the zero function that sends everything to 0. Use the definition of the
functions fi to show that this forces αi = 0 for all i proving what we want. Hint: Think about
useful vectors that you could plug into the function α1f1(x) + α2f2(x) + · · · + αnfn(x) = 0 to
show that αi = 0. A choice of one point will show that one of the αi = 0 and a choice of different
point will show that αj = 0 for some j 6= i.

(d) Remember we are trying to put an upper bound on n(d). Here is a strategy: suppose we can
find another set of functions g1, . . . , gt such that W lies in their span. Argue that t ≥ n(d). This
means t is an upper bound on n(d).

In the remaining part of this problem we will see how to find such functions g1, . . . , gt. Of course
we want as small an upper bound as possible so we want a t that is as small as possible.

(e) Check that each fi is a polynomial of degree 4 in x1, . . . , xd.

An example of a degree four polynomial in d = 3 variables x1, x2, x3 is

x3
1x3 + x2

2x3 − 15x1x3 + 100.

Each such polynomial is a linear combination of monomials. The monomials in the above example
are x3

1x3, x2
2x3, x1x3 and 1. A monomial is a polynomial with one term and coefficient 1.

(f) Argue that the set of all polynomials in d variables x1, . . . , xd, of degree at most 4, is a vector
space. Call this vector space P .

(g) Write out all monomials in x1, x2 of degree at most 4 and check that all polynomials in x1, x2 of
degree at most 4 can be written as a linear combination of these monomials.

(h) Argue that the vector space P is spanned by all monomials of degree at most 4 in x1, . . . , xd.

In fact, the monomials of degree at most 4 form a basis of P and there are precisely
(
d+4

4

)
monomials of degree at most 4 in d variables.

(i) Using the above, argue that (
d+ 4

4

)
≥ n(d).

This upper bound is a 4th degree polynomial in d. We need to get to a quadratic in d to get the
result we want.

(j) To get a smaller upper bound, we need to look for a smaller set of functions that span W . Maybe
we don’t need all monomials of degree at most 4 to generate W since the functions fi have rather
special structure. So we should look at it more carefully. Expand fi and show that it is a linear
combination of the following functions:

(x2
1 + · · ·+ x2

d)
2

xj(x
2
1 + · · ·+ x2

d) j = 1, 2, . . . , d

x2
j j = 1, 2, . . . , d

xixj 1 ≤ i < j ≤ d
xj j = 1, 2, . . . , d

1
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(k) Show that there are 1
2 (d2 + 5d + 4) functions in the above list. Why is this number an upper

bound on n(d)?

15. * Equiangular lines in Rd. It is important in areas like coding theory to understand the largest
number of lines through the origin in Rd such that the angle between any two of them is the same.
A collection of lines through the origin in Rd such that the the angle between any two of them is the
same is a set of equiangular lines. For example, the maximum number of lines in R3 such that the
angle between any two of them is 90◦ is 3 – take for example the 3 coordinate axes. However, if the
common angle is different from 90◦ there can be more lines. The 6 diagonals of a regular icosahedron
are equiangular. Google for the regular icosahedron if you haven’t seen it before.

In the following exercise we will argue that you cannot have more than 6 equiangular lines in R3 no
matter what angle you choose.

Suppose we have a collection of n equiangular lines in R3 and ~vi is a unit vector in the direction of the
ith line. It does not matter if you choose ~vi or its negative, but choose one and call it ~vi.

(a) Argue that the condition of equiangularity means that if i 6= j then ~v>i ~vj = cos θ for a fixed angle
θ.

(b) You showed last week that the set of all symmetric 3 × 3 matrices form a vector space. Argue
that the dimension of this vector space is 6.
Hint: What is a basis of the space of all 2× 2 symmetric matrices? Then try 3× 3.

Now consider the rank one psd matrices ~vi~v
>
i of size 3× 3.

(c) We will now argue that the rank one psd matrices ~vi~v
>
i of size 3×3, coming from the equiangular

lines, are linearly independent (as matrices). This will give us the result since all these rank
one psd matrices are in the 6 dimensional vector space of symmetric matrices, there cannot be
more than 6 of them. This will imply that there cannot be more than 6 lines.

i. Suppose the matrices ~vi~v
>
i are linearly dependent. Then there are a1, . . . , an ∈ R such

that ∑
ai~vi~v

>
i = 0.

Multiply this expression on the left with ~v>j and on the right with ~vj and get that

0 = aj +
∑
i 6=j

ai cos2 θ.

ii. Find a matrix M such that you can express the equations from (b) in the form M~a = 0.

iii. Check that M = (1− cos2 θ)In + cos2 θJn where Jn is the n× n matrix of all ones.

iv. Argue that In and Jn are psd.

v. Argue that the coefficient (1− cos2 θ) is positive and hence M is psd.

vi. Is M positive definite? If so, what is ~a if M~a = 0?

vii. Conclude that the psd matrices ~vi~v
>
i are linearly independent.

(d) Can you extend each step above to see that you cannot have more than
(
d+1

2

)
= d(d+1)

2 equiangular
lines in Rd.
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Chapter 15

Quotients of Vector Spaces and Error
Detecting Codes

This chapter covers two completely separate topics. The notion of a quotient of a vector space is a central
idea in many areas of pure mathematics. While it is very pure at its heart, it still has nice applications which
yield surprising results, as we will soon see. After investigating quotients of various vector spaces we move
on to error correcting codes and the ideas behind vector spaces over finite fields.

15.1 Quotient Spaces

When we first came across the idea of a subspace S, we may recall that the first and simplest property was
that 0 ∈ S. This property ensures that we can never have parallel subspaces. That being said, parallel
lines to a given line through the origin in R2 are still worth thinking about and the idea of a quotient space
allows us to still look at these parallel lines which are almost subspaces.

The first idea we meet is the idea of adding a vector to a subspace.

Definition 15.1.1. Let V be a vector space and S ⊂ V be a subspace. Given v ∈ V we define v + S to be
the subset of V defined by

v + S = {v + s : s ∈ S}

Example 15.1.2. Let S denote the line in R2 with equation y = 2x. That is

S =
{[ x

2x

]
: x ∈ R

}
=
{[x

y

]
∈ R2 : y = 2x

}
The subset

[
17
20

]
+ S is the line in R2 containing the point (17, 20) with slope 2. As a subset, it is the line

obtained by adding

[
17
20

]
to every point on S.
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We can extend this idea to a more general one.

Definition 15.1.3. An affine subset of V is a subset of the form v+S for some v ∈ V and some subspace
S ⊂ V . The affine subset v + S is said to be parallel to S.

Example 15.1.4. Let S =
{xy

z

 ∈ R3 : z = 0
}

= the xy-plane. All affine subsets of R3 parallel to S are

of the form v + S for some v ∈ R3. Geometrically, they are all the planes parallel to the xy-plane

Note that we always have v ∈ v + S. This follows from the fact that 0 ∈ S hence the vector v, as an
element of v + S is obtained via v + 0. We can now generalize further and introduce the central idea.
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Definition 15.1.5. Let S be a subspace of V . The quotient space V/S, sometimes pronounced “V mod
S”, is the set of all affine subsets of V , parallel to S. In other words

V/S = {v + S : v ∈ V }

We will soon see that this is in fact a vector space in its own right and the “vectors” in this space are
the affine subsets! Let’s revist the same examples in this new context.

Example 15.1.6. If S =
{[

x
y

]
∈ R2 : y = 2x

}
then R2/S is the set of all lines in R2 of slope 2.

Example 15.1.7. If S =
{x0

z

 ∈ R3 : x, z ∈ R} = the xz-plane, then R3/S is the set of all planes parallel

to the xz-plane. The planes themselves are the elements of this set.
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Theorem 15.1.8. Given a real vector space V and a subspace S ⊂ V , the set V/S forms a real vector space
with vectors given by the affine subsets of the form v + S for v ∈ V

Proof. Let v, w ∈ V and r ∈ R. We define vector addition and scaling as follows:

• (v + S) + (w + S) = (v + w) + S.

• r(v + S) = (rv) + S.

where v + w and rv are defined with the operations coming from V .

Now that we have a vector space structure on V/S, we will want to know the answer to the following
question.

Question 15.1.9. When are two affine subsets equal in V/S?

The answer is simple but takes time to digest. We have that

v + S = w + S if and only if v − w ∈ S

Let’s see why this is true.

If v + S = w + S then in particular, we know that v ∈ w + S because v ∈ v + S. Going further, this
means that there exists some element s ∈ S such that v = w + s hence v − w = s and v − w ∈ S.

In this picture, we can see that

[
2
0

]
+ S =

[
3
2

]
+ S where S is the line y = 2x. We can also verify that[

3
2

]
−
[
2
0

]
=

[
1
2

]
∈ S. The two vectors

[
3
2

]
and

[
2
0

]
are in some sense, indistiguishable in V/S, which leads

us to the next, ultra important, idea.
The notion of a representative of an affine subset is an especially subtle detail that can be easily overlooked

when dealing with quotient spaces. We call v a representative of the affine subset v+S and if v+S = w+S
then both v are w are representatives of the same affine subset. The central component of V/S being a vector
space is that addition and scaling of vectors in V does not depend on the representative that we
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choose. This is one of the single most important facts about quotient spaces and one that makes our life
considerably easier. Stated more formally, this means that if v + S == v′ + S and w + S = w′ + S then

(v + w) + S = (v′ + w′) + S

so to correctly add vectors in V/S, we don’t need to worry about the representative that we choose to add
with. In general, affine subsets have infinitely many choices for representatives and in many cases we want
to take the simplest one. In either case, it is very useful to know when two affine subsets are the same for
this reason.

Revisiting the example with S being equal to the line in R2 with equation y = 2x, we know that the
vectors in R2/S are lines of slope 2 and we can add any two of them by adding any representatives of those
lines.

We can see from that picture that([
2
0

]
+ S

)
+
([

5
0

]
+ S

)
=

[
7
0

]
+ S

and ([3
2

]
+ S

)
+
([6

2

]
+ S

)
=

[
9
4

]
+ S

but

[
9
4

]
+ S =

[
7
0

]
+ S because

[
9
4

]
=

[
7
0

]
=

[
2
4

]
∈ S

We end the section with some fundamental facts about quotient spaces in general. Since quotient spaces
are vector spaces, we can investigate bases for them and in the process, find a nice formula for their dimension.
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Definition 15.1.10. Let S be a subspace of V . There always exists a (linear!) map from V into the quotient
space and this map is known as the quotient map

π : V → V/S

We define this map by sending any vector v ∈ V to the affine subset that it represents. That is

π(v) = v + S

The quotient map is what allows us to determine the dimension of any quotient space. Since it is a linear
map we can look at its rank and nullity and this is the key.

Proposition 15.1.11.
dim(V/S) = dim(V )− dim(S)

The first thing to observe is that the zero vector in the vector space V/S is the “vector” S. That is, the
construction taking us from V to V/S creates a new vector space in which the subspace S is now playing
the role of the zero vector. This is reflected in the fact that if v + S ∈ V/S, then (v + S) + S = v + S. If
we want to look at addition with respect to adding representatives, then we can think of adding anything to
S as adding its representative to 0 ∈ S. Taking 0 as the representative of S is always the simplest choice.
This is the key idea to the proof of this proposition.

Proof. Since the zero vector of V/S is S itself, we can conclude that ker(π) = {v ∈ V : π(v) = S} and

π(v) = v + S = S if and only if v ∈ S

therefore ker(π) = S. Moreover, we know that every v ∈ V lies in some affine subset parallel to S which
implies that

Range(π) = V/S

That is, given any affine subset v + S ∈ V/S we always have π(v) = v + S. We can now directly imply
rank-nullity and deduce that

dim(V ) = dim(kerπ) + dim(Rangeπ) = dim(S) + dim(V/S)

which means that
dim(V/S) = dim(V )− dim(S)

Example 15.1.12. Let S be the line y = 2x in R2. We know that dim(R2) = 2 and that dim(S) = 2 hence
dim(R2/S) = 1. Since this new vector space is 1-dimensional, we can take any non-zero vector as a basis
element. For example, we can say that

R2/S = Span
{[1

0

]
+ S}

We know that

[
1
0

]
+ S is a non-zero vector in V/S because

[
1
0

]
/∈ S.
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15.2 Quotients of Polynomial Vector Spaces

One of the most useful instances of quotient spaces comes from quotients of polynomial vector spaces like
R[x]. Since some fixed subspace S plays the role of the zero vector in V/S, we are able to talk about zeroes
of polynomials in spaces like R[x]/S, because subspaces in this case look like sets of polynomials. We inves-
tigate functions on hypercubes and remainders of polynomials upon divison in this section and end with a
nice application relating polynomials to determinants of matrices.

Let’s begin by considering the vertices of the line segment C1 = [0, 1], namely, V1 = {0, 1} ⊂ R. Suppose
f(x) ∈ R[x] is the univariate polynomial

f(x) = x5 + 20x4 + 8x2 − 10

Observe that f(0) = −10 and f(1) = 1 + 20 + 8− 10 = 19.

Question 15.2.1. How can we express the values that f takes on V1 without having to look at a degree 5
polynomial?

The potential answer to this question is to find the linear function L that goes through both points

Surprisingly, we find the function L by looking at a quotient space of R[x]!

First observe that the polynomial p(x) = x2 − x has both 0 and 1 as a root, that is, p(0) = p(1) = 0.
This is the same as writing the factorization

x2 − x = x(x− 1) = 0

If we divide f(x) by p(x) (remember long division from high school!) we obtain a new expression for f(x),
namely

x5 + 20x4 + 8x2 − 10︸ ︷︷ ︸
f(x)

= (x2 − x)︸ ︷︷ ︸
p(x)

(x3 + 21x2 + 21x+ 29)︸ ︷︷ ︸
multiple of p that goes into f

+ (29x− 10)︸ ︷︷ ︸
remainder

We write this compactly as
f(x) = p(x)m(x) + r(x)
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where m(x) is the polynomial that you get upon division and r(x) is the remainder.

We can now check that r(x) (a linear function!) has the same values that f(x) does at the points 0 and
1.

f(0) = p(0)m(0) + r(0) = 0m(0) + r(0) = r(0)

and
f(1) = p(1)m(1) + r(1) = 0m(1) + r(1) = r(1)

This implies that the function r(x) = 29x− 10 satisfies

r(0) = −10 = f(0)

and
r(1) = 19 = f(1)

We can see that r(x) is much simpler than f(x) but conveys the same information about f(x) on the points
0 and 1.

THIS ALWAYS WORKS!

That is, if f(x) is any univariate polynomial and we have an expression

f(x) = p(x)m(x) + r(x)

, where r(x) is the remainder of f(x)
r(x) , then f(x) = r(x) at all the roots of p(x). This is true for any polynomial

p(x) whose degree does not exceed that of f . Formalizing this a little bit more, we can say that every poly-
nomial f(x) ∈ R[x] has a “representative” function r(x) (for some given p(x)) where deg(r(x)) <deg(p(x)).
Sticking with the example of p(x) = x2 − x, we can say that every polynomial f(x) ∈ R[x] has a represen-
tative function r(x) that is linear (degree 1), since deg(r(x)) <deg(p(x)) = 2, in this case. Conversely, if
f(x) is a linear polynomial, it is its own representative function, as a function on V1 = {0, 1}. We can now
formalize this completely.

Definition 15.2.2. Let (x2 − x) denote the subspace of R[x] containing all polynomial multiples of x2 − x.
That is

(x2 − x) = {g(x)(x2 − x) : g(x) ∈ R[x]}

We say R[x]/(x2 − x) is the vector space of all representatives of polynomial functions on V1 = {0, 1} (the
roots of x2 − x).
More generally, given p(x) ∈ R[x], R[x]/(p(x)) is the vector space containing all representatives of polynomial
functions on the roots of p(x). Each polynomial is represented by its remainder, after division by
p(x).

There are some less confusing and more intuitive ways of thinking about R[x]/(p(x)), all of which are
valid and can be used.

1. R[x]/(p(x))“ = ”{All polynomials of degree less than that of p(x)}. This way of viewing it follows
from the fact that the remainder of any polynomial, after division by p(x) must have strictly smaller
degree than that of p(x)).

(a) R[x]/(x2 − x)“ = ”{All linear polynomials in x}.

2. The vector space of all polynomials, under the relation that p(x) = 0 We can view it in this way
because in V/S, the subspace S becomes the zero vector. In this case, S is multiples of p(x), hence
p(x) = 0 in R[x]/(p(x).
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(a) In R[x]/(x2 − x), we have x2 − x = 0 hence every instance of x2 can be replaced with x (since
x2− x = 0 =⇒ x2 = x). We can apply this procedure to any polynomial, and we are done when
we obtain a polynomial of degree strictly less that 2. This is in many ways, the best way to think
about elements of R[x]/(p(x)).

The second point described above is extremely useful. Using the relation introduced by p(x) will always
allow us to reduce a given polynomial down to its remainder as follows.

Example 15.2.3. Let p(x) = x2 − x and consider R[x]/(x2 − x). The relation x2 − x = 0 allows us to
replace any instance of x2 with x. We can apply this procedure to f(x) = x5 + 20x4 + 8x2 − 10. In the
quotient space, we have the following string of equalities

f(x) = x5 + 20x4 + 8x2 − 10 = x(x2)2 + 20(x2)2 + 8x2 − 10

= x(x)2 + 20(x)2 + 8x2 − 10 = x2 + 28x2 − 10 = x+ 28x− 10 = 29x− 10

Using the method of this example, we can see that every polynomial can be reduced down to a linear
one, and it is this linear polynomial that represents any f(x) ∈ R[x], in this quotient space. That is, every
polynomial in this space is represented by a linear one, hence a basis for R[x]/(x2 − x) is {1, x}.

Before moving on to multivariable polynomials, we make note of one last crucial fact that will prove
useful in the next section. Recall that two elements v, w ∈ V/S are equal if and only if v − w ∈ S. The
same definition applies to R[x]/(p(x)) since it is a quotient space, but we can obtain an even more specific
definition of equality in this case, which will follow from the definition of the subspace (p(x)).

Equality in R[x]/(p(x))

If p(x) ∈ R[x], then two polynomials q(x), h(x) ∈ R[x]/(p(x)) are equal if there exists a polynomial
m(x) ∈ R[x] such that q(x) − h(x) = m(x)h(x). In other words, q(x) = h(x) in R[x]/(p(x)) if and only if
q(x)− h(x) ∈ (p(x)) = the subspace containing all multiples of p(x).

Now, we move away from the single variable case. We mention that by looking at the quotient by a sub-
space of the form (p(x)), we are looking at values that all polynomials take on the roots of p(x). The roots of
a single variable polynomial are all just numbers, but what would we do if we wanted to look at values that
a function takes on points of the form (x, y)? To do this, we would need to look at multivariable polynomi-
als. The notion of division still carries over to this setting, as do all the other properties we have already seen.

Consider the vertices of the unit square V2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. In terms of polynomials, the set
of points V2 is the set of simultaneous solutions to x2 − x = 0 are y2 − y = 0. In light of our previous work,
this is explained by division of a multivariable polynomial by both x2 − x and y2 − y.

In general, division by multivariable polynomials is much more delicate than the single variable case,
however, by using relations the come from x2 − x = 0 and y2 − y = 0, we can obtain the desired remainder
in a similar fashion that we done before. Letting R[x, y] denote the vector space of all polynomials in two
variables, with real coefficients, we can replace any instances of x2 or y2 with x and y respectively.

Example 15.2.4. Let (x2 − x, y2 − y) denote the subspace consisting of (sums of) polynomial multiples of
x2 − x and y2 − y. That is

(x2 − x, y2 − y) = {m(x, y)(x2 − x) + n(x, y)(y2 − y) : m(x, y), n(x, y) ∈ R[x, y]

We can define the quotient space R[x, y]/(x2 − x, y2 − y) to be obtained by the usual construction, where
elements of the subspace (x2−x, y2−y) are set equal to zero and are used as a relation to reduce polynomials
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down to their representatives.

Let f(x, y) = x2 + x2y + y3 ∈ R[x, y]. In R[x, y]/(x2 − x, y2 − y), we have x2 = x and y2 = y hence

f(x, y) = x2 + x2y + y3 = x2 + (x2)y + (y2)y = x+ (x)y + y(y) = x+ xy + y2 = x+ xy + y

Using the example as our main model for how to work in a quotient space like this, we can see that a
basis for R[x, y]/(x2 − x, y2 − y) is {1, x, y, xy}.

We finish the section by describing these quotient spaces in complete generality.

Let Vn = {(x, y) : x ∈ {0, 1}, y ∈ {0, 1}} = vertices of an n-dimensional hypercube. Then

R[x1, . . . , xn]/(x2
1 − x1, x

2
2 − x2, . . . , x

2
n − xn)

is the set of all polynomial functions on Vn. All polynomials in this vector space can be reduced down to
their representatives via the relations x2

i = xi. It is a vector space spanned by all square-free monomials in
x1, . . . , xn.

We finish by emphasizing (one last time) that division by x2
i − xi replaces x2

i by xi, everywhere that it
occurs. Given any polynomial f(x1, . . . , xn) ∈ R[x1, . . . , xn], we can replace all instances of x2

i with xi until
there are no more multiples of x2

i . This yields a representative of f(x1, . . . , xn) in the quotient space.

15.3 Application: Solving a Univariate Polynomial

As we have seen, a univariate polynomial is a polynomial in one variable. As an example, consider

p(x) = x5 − 20x4 + 8x2 − 10

The polynomial p(x) has degree 5. The terms of p(x) are x5,−20x4, 8x2 and −10. Note that there is no x3

term and no x term in p(x). The coefficients of p(x) are the coefficients of all terms in p(x) of degree at
most 5 including the missing terms. In this example, the coefficients of p(x) are −10, 0, 8, 0,−20, 1 written in
increasing order of the degree of the term they appear with. The leading term of p(x) is x5 and it’s leading
coefficient is 1.

The general univariate polynomial of degree d is

p(x) = adx
d + ad−1x

d−1 + ad−1x
d−2 + · · ·+ a1x+ a0

where the coefficients a0, a1, . . . , ad−1, ad are real numbers and ad 6= 0.

Goal: We wish to solve p(x) = 0.

All the values of x for which p(x) = 0 are called the roots of p(x). By the Fundamental Theorem of
Algebra, if degree(p(x)) = d then p(x) has d roots, some of which may be complex or might occur more
than once.

Example 15.3.1. The general quadratic polynomial is q(x) = ax2 + bx + c = 0 where a, b, c ∈ R. Its two
roots are

x =
−b±

√
b2 − 4ac

2a

The quantity b2 − 4ac is the discriminant of the quadratic polynomial q(x). The quadratic formula shown
above tells us the following:

1. If b2 − 4ac > 0, then q(x) has two real roots.
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2. If b2 − 4ac = 0 then q(x) has a double real root,

3. and if b2 − 4ac < 0, q(x) has two complex roots of the form α+ iβ and α− iβ.

Try making examples of quadratics that have all these possibilities.

Idea: Suppose we could find a d× d matrix Ap such that p(x) is the characteristic polynomial of Ap. Then
the roots of p(x) would be the eigenvalues of A.

We will see that this is always possible!!

Here is the algorithm:

1. Input: p(x) = adx
d + ad−1x

d−1 + ad−1x
d−2 + · · ·+ a1x+ a0

2. Set up the following d× d matrix

Ap =



0 0 0 0 · · · 0 −a0/ad
1 0 0 0 · · · 0 −a1/ad
0 1 0 0 · · · 0 −a2/ad
0 0 1 0 · · · 0 −a3/ad
...

...
...

0 0 0 0 · · · 1 −ad−1/ad


3. The characteristic polynomial of Ap, namely det(Ap − λI), is either p(λ) or −p(λ). Therefore, the

eigenvalues of Ap are the roots of p(x).

Let’s see an example of this in action.

Example 15.3.2. Using Julia let’s find the roots of the polynomial p(x) = x5 − 20x4 + 8x2 − 10. See Julia
documentation on polynomials if the following commands are not self evident.

julia> using Polynomials

julia> p = Poly([-10,0,8,0,-20,1])

Poly(-10 + 8*x^2 - 20*x^4 + x^5)

julia> roots(p)

5-element Array{Complex{Float64},1}:

-0.6685161487282535 - 0.4961354572272264im

-0.6685161487282535 + 0.4961354572272264im

0.6785047807938136 - 0.5116507106132901im

0.6785047807938136 + 0.5116507106132901im

19.980022735868893 + 0.0im

The polynomial p(x) has 5 roots as expected. The last one is real. The other 4 are complex and they come
in conjugate pairs: a+ ib and a− ib. This is a general fact: if a polynomial with real coefficients has complex
roots then the complex roots come in conjugate pairs.

Now we set up the matrix Ap as follows. I call it A in Julia.

julia> A = [0 0 0 0 10; 1 0 0 0 0; 0 1 0 0 -8; 0 0 1 0 0; 0 0 0 1 20]

55 Array{Int64,2}:

0 0 0 0 10

1 0 0 0 0

0 1 0 0 -8
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0 0 1 0 0

0 0 0 1 20

julia> using LinearAlgebra

julia> eigvals(A)

5-element Array{Complex{Float64},1}:

-0.6685161487282542 - 0.4961354572272264im

-0.6685161487282542 + 0.4961354572272264im

0.678504780793814 - 0.5116507106132913im

0.678504780793814 + 0.5116507106132913im

19.98002273586887 + 0.0im

Check that the eigenvalues of A are exactly the roots of p(x).

Why does this work?

A mechanical proof: Check that the determinant of Ap − λI is exactly p(λ) or −p(λ). The best
strategy is to expand the determinant along the last column and you will see that this will work out. Try
it on some examples first and this might help you warm up for the general proof. You might need to know
some proof techniques like induction to do this precisely. For right now, just check it on examples and you
have a proof by example!

A more sophisticated proof: We will explain this on the example p(x) = x5−20x4 +8x2−10, leaving
out several steps for you to complete as homework problem.

We are going to look at polynomials mod p(x) in the proof below.

Consider the set B = {1, x, x2, x3, x4} which is the set of all monomials of degree less than the degree of
p. Let V = Span(B). The elements of V are all linear combinations of 1, x, x2, x3, x4, i.e., elements of the
form a0 + a1x+ a2x

2 + a3x
3 + a4x

4 where a0, . . . , a4 ∈ R, which are precisely all polynomials in x of degree
at most 4.

Step 1: Check that V is a vector space. If you add two polynomials of degree at most 4 you get a
polynomial of degree at most 4. If you scale a polynomial of degree at most 4 by a real number you again
get a polynomial of degree at most 4.

Step 2: Note that any polynomial of degree at most 4 cannot be divided by p(x). Therefore, it is its
own remainder when you divide it by p(x). On the other hand, the remainder of any polynomial q(x) after
division by p(x) is a polynomial of degree at most 4. So the vector space V is the set of all remainders of all
polynomials after division by p(x).

This observation allows us to think of V as really the set of all polynomials in x, where each polynomial
is represented by its remainder after division by p(x). Note that many polynomials can have the same
remainder when divided by p(x), so one polynomial r(x) in V is the representative of many polynomials. In
particular, the 0 in V is the representative of all polynomials that have 0 remainder when divided by p(x),
namely all polynomials that are polynomial multiples of p(x).

Step 3: Consider the linear transformation T : V → V that sends r(x) 7→ xr(x). In other words,
T (r(x)) is the product of r(x) with the variable x. For example

T (3x2 + 5x− 1) = x(3x2 + 5x− 1) = 3x3 + 5x2 − x

What happens if T (r(x)) is a polynomial of degree larger than 4? For example

T (x4 + 5x− 1) = x(x4 + 5x− 1) = x5 + 5x2 − x
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Then we need to replace the answer, x5 + 5x2 − x, by its representative in V , which is the remainder after
division by p(x). Doing long division, we see that the remainder is 20x4 − 3x2 − x + 10. Therefore, in this
special vector space V of remainders,

T (x4 + 5x− 1) = 20x4 − 3x2 − x+ 10

You can check that T is a linear transformation by checking the following:

T (r1(x) + r2(x)) = x(r1(x) + r2(x)) = xr1(x) + xr2(x), T (αr(x)) = x(αr(x)) = αxr(x).

Note that if the degree of x(r(x)) exceeds 4 then you have to replace it with its remainder on division by
p(x).

Step 4: We are almost done. Suppose λ ∈ R and f(x) ∈ V is an eigenvalue/eigenvector pair of T ,
meaning T (f(x)) = λf(x). This means that xf(x) = λf(x) since T (f(x)) = xf(x). In other words,
(x− (λ))f(x) = 0 in the vectors space V . Now remember what 0 means: (x− (λ))f(x) = 0 means that p(x)
divides (x− λ)f(x), equivalently, there is some other polynomial h(x) such that

h(x)p(x) = (x− λ)f(x).

This equality is in the usual sense. Let’s look at the degrees on the left and right. On the right we have a
polynomial of degree at most 5 since the degree of f(x) is at most 4 as it came from V . Therefore, h(x) must
be just a real number and the degrees on both sides better be 5. This means (x− λ)f(x) is a factorization
of p(x) (up to some scalar multiple perhaps) and one of its factors is (x− λ). Therefore, λ is a root of p(x).

Step 5: The matrix Ap is the matrix representing T in the basis B = {1, x, x2, x3, x4}. Therefore,
its columns should be the coordinates of T (1), T (x), T (x2), T (x3) and T (x4). Check for instance that
T (1) = x has coordinates (0, 1, 0, 0, 0) with respect to B since x = 0(1) + 1(x) + 0(x2) + 0(x3) + 0(x4).
So (0, 1, 0, 0, 0) is the first column of Ap. T (x) = x2 has coordinates (0, 0, 1, 0, 0) in the basis B, and it is
the second column of Ap etc. Finally, T (x4) = x5 which should be replaced by its remainder after division
by p(x) = x5 − 20x4 + 8x2 − 10. This is precisely 20x4 − 8x2 + 10 whose coordinates in the basis B is
(10, 0,−8, 0, 20). This is the last column of Ap.

In homework, you will do this in generality but the main idea is represented in this last step.
Some comments:

1. The matrix Ap is called the companion matrix of the polynomial p(x).

2. This lecture shows you that every univariate polynomial is a determinant. Therefore the polynomials
you get as determinants are not rare! It was, and continues to be, an interesting question in mathematics
to ask if a polynomial (in many variables) can be expressed as a determinant of special classes of
matrices. A positive answer can have good algorithmic consequences.

15.4 Problem Set 7

1. (a) Find the roots of the following polynomial using its companion matrix:

p(x) = x7 − 3x5 + 100x4 − 2x− 5

and double check your answer by computing all roots of p in Julia.

(b) Let p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 and recall that R[x]/(p) is defined to be the set of all

(unique) remainders of polynomials in R[x] after division by p(x). Argue that R[x]/(p) is a vector
space over R and find a basis for it.
Note: You can show that this is a vector space in a number of ways, depending on how you
think of elements in R[x]/(p). You can think of them as remainders or you can think of them as
elements of the form f(x) + (p(x)) like we did in the first lecture on quotient spaces.
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(c) Argue that the map
T : R[x]/(p)→ R[x]/(p) s.t. r(x) 7→ xr(x)

is a linear transformation on the vector space R[x]/(p).

(Note: To do this correctly, you must check that the linear map is well-defined in addition to
satisfying the properties of being a linear transformation. That is, if q(x) and h(x) represent the
same element of R[x]/(p) then T (q(x)) = T (h(x)). You’ll want to use the fact that q(x) = h(x)
in R[x]/(p) if and only if q(x)− h(x) ∈ (p), where elements of (p) are all polynomial multiples of
p.)

(d) The companion matrix Ap is the matrix representing the above linear transformation. Justify the
formula for Ap using the basis you computed in (b).
(Hint: Recall how to compute the matrix of a linear map by looking at what the map does to a
basis of the domain vector space.)

2. (Warm-up for next week)

(a) Let q(x) = ax2 + bx+ c be a quadratic polynomial where a, b, c are real numbers. Suppose it has
a complex root α + iβ. Then argue that q(x) will also have α − iβ as a root. Hint: You know
that q(α+ iβ) = 0. Write this out and see if it follows that q(α− iβ) = 0.

(b) Argue that for any polynomial in one variable whose coefficients are all real, complex roots come
in conjugate pairs.

3. (a) What are all the points in R3 that are (simultaneously) the solutions of the three polynomials
x2 − 1 = 0, y2 − 1 = 0, z2 − 1 = 0? Call this set C and draw a picture of it.

(b) Consider the polynomial f = x3y−3xy2 + 4x2y2 + 2z4. The lowest degree polynomial r for which
there exists polynomials g1, g2, g3 such that f = g1(x2 − 1) + g2(y2 − 1) + g3(z2 − 1) + r is the
remainder of f after division by x2 − 1, y2 − 1, z2 − 1. What procedure would you use to find
the remainder of any polynomial g in R[x, y, z] after division by x2 − 1, y2 − 1, z2 − 1? Hint:
Polynomial long division doesn’t work the same way with multivariable polynomials. You will
need to think about f in a certain quotient space.

(c) Use your procedure to find the remainder of the given f after division by x2 − 1, y2 − 1, z2 − 1.

(d) As with univariate polynomials, R[x, y, z]/(x2− 1, y2− 1, z2− 1) denotes the set of all remainders
of polynomials f(x, y, z) ∈ R[x, y, z] after division by x2− 1, y2− 1, z2− 1. This is a vector space.

i. Which polynomials in R[x, y, z] correspond to 0 in this vector space?

ii. Find a basis for the vector space R[x, y, z]/(x2 − 1, y2 − 1, z2 − 1).

(e) In general, what is a basis for the vector space R[x1, . . . , xn]/(x2
1 − 1, x2

2 − 1, . . . , x2
n − 1)?
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Chapter 16

Error Correcting Codes

Nobody can get through an advanced linear algebra class without seeing some vector spaces over finite
fields, which is partly why this chapter is here. Error correcting codes pop up in many useful areas of math,
including secure encryption and ISBN numbers. Throughout this chapter, the word exercise is more of an
optional suggestion than a requirement. Some exercises are reworded as problems at the end of the chapter,
others are sprinkled throughout the text as a way to check your own understanding of the material, but may
be skipped.

16.1 Vector spaces over finite fields

If you’re not familiar with modular arithmetic, take a quick look at the handout on it.
In this lecture we will focus on Z2 = {0, 1}, the integers mod 2 or binary numbers. How do we add and

multiply in Z2? The only thing to remember is that we should do all these operations as we normally would
but everytime you get a number different from 0, 1 you should replace it by its representative in Z2.

Add as follows:
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

The reason why 1 + 1 = 0 is because normally 1 + 1 = 2 and the representative of 2 in Z2 is 0.
Multiplication: We can only use elements from Z2 and we should stay in Z2:

0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1

The multiplicative inverse of 1 is 1 since 1 · 1 = 1.
All other rules of addition and multiplication are the same as in R: addition and multiplication are both

commutative and associative and so on.
A set that has all these properties is called a field. I am being a bit vague about “all these properties”.

The set of real numbers R, the set of rational numbers Q and the set of complex numbers C are all fields.
Z2 is called the finite field of two elements. In general, for any prime number p, Zp is the finite field of p
elements. In other words Zp has the properties of R and C. The word “finite” is used since the field Zp has
only finitely many (i.e., p) elements.

Just as with R and C we can have vector spaces over Z2. By this we mean sets that satisfy all the rules
of being a vector space and where linear combinations have coefficients from Z2 and scalar multiplication
only uses elements of Z2.

Example 16.1.1. What is (Z2)3? Remember R3 is the set of all triples of real numbers (a, b, c). So (Z2)3

must be all triples of elements from Z2.

(Z2)3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
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Note that these are precisely the corners of a special cube of side length 1 (called the unit cube) in R3.
Check that (Z2)3 is a vector space over Z2 just like R3 is a vector space over R:

If a, b ∈ (Z2)3 and α, β ∈ Z2 then αa+ βb ∈ (Z2)3.

For example, if a = (1, 0, 0), b = (1, 0, 1), α = 0, β = 1 then 0(1, 0, 0) + 1(1, 0, 1) = (0, 0, 0) + (1, 0, 1) =
(1, 0, 1) which is still in (Z2)3. Try a few more examples.

(Z2)4 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), . . . , (1, 1, 0, 0), . . . , (0, 1, 1, 1), (1, 1, 1, 1)} which are precisely all
the corners of the unit cube in R4. It has 24 = 16 elements. This is again a vector space over Z2.

In general (Z2)t is a vector space over Z2 with 2t elements.

Exercise 16.1.2. What is a basis for (Z2)3? In general, (Z2)t? What are the dimensions of these vector
spaces?

Since (Z2)t is a vector space, it can have subspaces. These would be subsets of (Z2)t that themselves
form a vector space over Z2. We will see subspaces in the next section.

16.2 Error Correcting Codes

The following material is taken from the book Thirty Three Miniatures by J. Matouşek.
Suppose we wish to transmit a message as a string v of 0s and 1s. The transmission channel could

introduce errors. For example you might send the string v = 1011 but the string your buddy receives is
w = 1001, which has one error. We assume that the probability of many errors is small, say the probability
of two errors is very small, but there is a chance of one error. In general, the probability of k errors might
be very small, but there is a significant chance of k − 1 or less errors. Error correcting codes will pad your
original message with extra digits that can help you correct errors. Below we see how this works.

Example 16.2.1. Suppose the probability of two errors is very small but one error is quite possible. Then if
we wish to send the string 1011, we could make the rule that we will triple every digit and send 111000111111.
Then if your buddy receives 110000111111, they will know that there is an error in the first digit and the
message really is 1011. Of course there might be more errors but since the chance of two errors is small, this
assessment seems reasonable. The question is, do you really need to triple every digit? Can you be more
economical?

One of the best known error correcting codes is the Hamming code which was discovered in the 1950s.

Example 16.2.2. Here is what a Hamming code would do with a string v = abcd where a, b, c, d ∈ {0, 1}.
It would send w = abcdefg where

e = a+ b+ c mod 2, f = a+ b+ d mod 2, g = a+ c+ d mod 2

So if v = 1011, the code would send w = 1011001. We will see that this can correct one error.

Now here is where Z2 and (Z2)n come into the picture. Recall that the elements of (Z2)n are precisely
all strings of length n from the alphabet {0, 1} = Z2. An element of (Z2)n is called a string or word of length
n (or with n-bits) from the alphabet Z2.

Definition 16.2.3. 1. A code of length n is any subset of (Z2)n.

2. A linear code of length n is a subspace of (Z2)n.

Example 16.2.4. Consider all 7-bit strings that the Hamming code in the previous example will produce
starting with all 4-bit strings:

C = {0000000, 0001011, 0010101, 0011110, 0100110, 0101101, 0110011, 0111000, 1000111,

1001100, 1010010, 1011001, 1100001, 1101010, 1110100, 1111111}
C is a code since it is a subset of (Z2)7.
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We will now see that the code C is in fact a linear code. To prove this we need to argue that C is a
subspace of (Z2)7. How do we prove such a thing?

Remember that there are two ways of representing a subspace. We can either find a generating set (or
basis) or write the set as the solutions to a finite number of linear equations. All this also works over Z2 as
long as all calculations are done mod 2. Let’s look at these methods for a subspace C of (Z2)n.

1. By basis: Suppose G is a k × n matrix whose rows from a basis of C. Then all elements of C are
linear combinations of the rows of G and so we can write C as

C = {y>G : y ∈ (Z2)k}

We call G a generator matrix of C.

How to use G to encode messages? If we need to send a message v ∈ (Z2)k we would send the
string w = v>G which lies in C. If there is no error, then we can recover v by solving w = v>G which
has a unique solution since the rows of G are linearly independent.

Exercise 16.2.5. It is always possible to choose G so that it looks like G =
[
Ik A

]
.

Hint: Maybe first think about why this is always possible in a subspace of Rn.

Example 16.2.6. In our example C, we can take

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


Check that every one of the 16 elements in C is a linear combination of the four rows of G and there
are no more linear combinations. This is one way to see that C is a linear code but this is laborious.

Now check where 1011 would be sent by G. It would go to (1, 0, 1, 1)G = 1011001 as we had before.
Note that because G has the identity matrix I4 at the start, the first four bits in v>G is exactly v.

2. By linear equations: There is a trick to finding a system of equations Px = 0 that represents C. If
G =

[
Ik A

]
, then P =

[
−A> In−k

]
. In our example,

P =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


Check that the 16 elements in C satisfy Px = 0. Can you see that there are no more solutions? This
is a lot easier to check than the checking if all elements of C are combinations of the rows of G.

If you write out the equations, do you see that they say

a+ b+ c ≡ e mod 2, a+ b+ d ≡ f mod 2, a+ c+ d ≡ g mod 2

The matrix P is called the parity check matrix of the code C. Note that all nonzero elements of (Z2)3

appears as a column of P .

Exercise 16.2.7. If you have a basis of any subspace stored as the rows of G =
[
Ik A

]
, then show

that the subspace is the set of solutions of
[
−A> In−k

]
x = 0.

To finish we need some coding theory terminology which will help us see that the Hamming code above
can correct one error.
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Definition 16.2.8. 1. The Hamming distance of two words u,v in (Z2)n is the number of places in
which they are different. Mathematcially:

d(u,v) = |{i : ui 6= vi, for i = 1, . . . , n}|

For example, d(1011, 1001) = 1 since the two words differ only in position 3, while d(1011, 1000) = 2.

It is useful to think of the Hamming distance geometrically as the smallest number of edges of the
unit cube that you need to walk on to go from u to v. The way to “walk” from a corner of the
unit cube to another, is to start with the initial corner and move successively to a neighboring corner,
which is a word that differs from the given word in exactly one digit. For example, we can “walk”
from 1101 to 1000 by successively making the moves 1011→ 1001→ 1000. You could have also done
1011 → 1010 → 1000. There are other longer routes between 1011 and 1000 through the corners of
the cube but the smallest number of steps needed is unique and this number of steps is the Hamming
distance between 1101 and 1000, namely d(1011, 1000) = 2.

2. A code C ⊆ (Z2)n corrects t errors if for every u ∈ (Z2)n there is at most one v ∈ C such that
d(u,v) ≤ t.
For example, our code C corrects one error, if for every u ∈ (Z2)7 there is at most one string in C at
distance 1 or 0 from u ∈ (Z2)7. Our example is indeed a one-error correcting code. Please check on a
few examples. We will prove this shortly.

3. The minimum distance of a code C is the smallest distance between any two words in C. Mathe-
matically,

d(C) := min{d(u,v) : u,v ∈ C, u 6= v}

In our example C, d(C) = 3. Check that any two code words differ in at least 3 bits and there are
pairs with Hamming distance exactly 3.

Theorem 16.2.9. A code C corrects t errors if and only if d(C) ≥ 2t+ 1.

We will prove the following special case which should help you see how to prove the general case. Also,
everything below is about 1-correcting codes. The arguments generalize.

Theorem 16.2.10. A code C corrects 1 error if and only if d(C) ≥ 3.

Proof. Suppose d(C) ≤ 2. Then there are two code words u,v ∈ C such that d(u,v) ≤ 2. This means that
either u and v are neighboring vertices of the unit cube or there is way to walk along the edges of the unit
cube in Rn from u to v via a word w which is also a corner of the unit cube. In the first case, there is a
code word within distance 1 from u and in the second case, the word w has two code words within distance
1 from it. Either way, C cannot correct 1 error by definition. This proves that if C corrects 1 error then
d(C) ≥ 3.

For the converse, suppose C is not 1-correcting. Then there is some w ∈ (Z2)n such that there are two or
more code words within distance 1 of it. Suppose u,v ∈ C are two of these code words. Then by the same
argument as above, we can walk from u to v via w in two steps. This in turn means that d(C) ≤ 2.

How can we encode and decode given a 1-correcting linear code C ⊆ (Z2)n with generator
matrix G of size k × n and parity check matrix P of size (n− k)× n?

Given a word v ∈ (Z2)k we encode it as w = v>G ∈ C. If we receive w′ ∈ (Z2)n, then we look for a word
w′′ ∈ C closest to w′ in Hamming distance. Since w′′ ∈ C, there is a unique v′ such that (v′)>G = w′′. We
declare v′ to be the decoding.

Why does this work? Suppose at most 1 error occurred during the transmission. Then w′ is at
distance at most 1 from w which lies in C. On the other hand, since C is 1-error correcting, there is at most
one code word within distance 1 of w′ and this one code word must be w and from that we recover v.

To finish we will argue that Hamming codes are 1-correcting and so our example code C is 1-correcting.
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Definition 16.2.11. Fix a positive integer l. The generalized Hamming code (for l) is the linear code
in (Z2)n where n = 2l − 1 with parity matrix P whose columns are all the nonzero elements of (Z2)l. In
particular, generalized Hamming codes are linear codes since they are solutions of Px = 0.

Example 16.2.12. In our code C, l = 3. The code words are in (Z2)7 and 7 = 23 − 1. The parity matrix
P has all the nonzero elements of (Z2)3 as columns.

Theorem 16.2.13. The generalized Hamming code C has d(C) = 3 and thus is a 1-error correcting code.

Proof. We first note that for any linear code C,

d(C) = min{d(0,u) : u ∈ C, u 6= 0}.

In other words, to compute the smallest distance between two code words, it is enough to compute the
smallest distance between 0 and any code word. Suppose not. Then there are two nonzero code words u,w
whose distance is d(C). Now consider 0 = u − u and w = v − u. Since C is a subspace, 0 = u − u and
w = v − u are also in C and distances don’t change under subtraction, so d(C) = d(0,w) .

To prove our theorem, we need to show that d(C) ≥ 3 which by the above is same as showing that
d(0,w) ≥ 3 for every nonzero w ∈ C. This is in turn is same as showing that every nonzero w ∈ C has at
least 3 nonzero bits. The parity matrix now helps. We can show that no word w with at most 2 nonzero
bits satisfies Pw = 0.

If w had only one nonzero bit then Pw = 0 if and only if a column of P is 0, but this is not allowed in
the definition of P . If w had two nonzero bits and Pw = 0 then two columns of P are the same which is
also not true. Therefore we are done.

Thus we see that our running example code C is 1-error correcting. The matrix P allows for easy
decoding.

Decoding a generalized Hamming code: Suppose we send the code word w and receive w′. If at
most one error has occurred we have w′ = w or w′ = w + ei for some i ∈ {1, 2, . . . , n}.

If w′ = w then Pw′ = 0. If w′ = w + ei then Pw′ = Pw + Pei = Pei which is the ith column of P .
Thus if there was at most one error, we can immediately tell if an error occurred and we see which bit was
wrong, namely the ith bit was wrong and there is a unique correction.

16.3 Problem Set 8

1. Let C be a subspace of (Z2)n, i.e., C is a linear code. (Note that parts (a) and (b) are true for ANY
subspace of any vector space. The argument has nothing to do with (Z2)n. In general, writing a
subspace as the span of the rows of a matrix is hard to work with. Writing the same subspace as the
kernel of a matrix is much more efficient and useful in practice. The first two problems investigate how
to do this in general.)

(a) If G is a k × n matrix whose rows form a basis of C, then argue that we can always choose G to
look like G =

[
Ik A

]
.

(b) Recall that every vector space can be written as a span of vectors or as the kernel of a matrix.
Suppose C is the kernel of an (n − k) × n matrix P (i.e., Px = 0 is the representation of C by
equations), then argue that P can be chosen to be P =

[
−A> In−k

]
. (Hint: Given G as above,

show that GP> = 0 and deduce that PG> = 0. Use this to show that the columns of G> equal
the kernel of P .)

(c) Consider the set C = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
i. Argue that C is a linear code, i.e., C is a subspace of (Z2)3.
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ii. Find a matrix G and P for C (Examples of how we construct these matrices are on page 3 of
the handout).

iii. Verify that Px = 0 for all x ∈ C. Notice that x 6∈ C if and only if Px 6= 0. This a handy way
to show that something is not a code word.

2. (a) A code C is said to be k-separated if d(C) = k.

i. Draw the three-dimensional unit cube and locate the elements of C in Problem 4(c) among
its corners.

ii. Use your picture to verify that the code C in Problem 4(c) is 2-separated. Hint:Think about
what k-separated means in terms of how many edges of the cube you need to walk along to
get from any given code word to another.

(b) We proved that the Hamming code from Example 6 in the handout, in (Z2)7, is 3-separated by
using its parity matrix P . For this example, argue that every non-code word has exactly one code
word within Hamming distance 1 from it.
Hints: You should work through this problem using the following steps

i. Argue that each element of (Z2)7 has 7 immediate neighbors (at Hamming distance 1 from
it).

ii. Use the fact that C is 3-separated to argue that all 7 words of Hamming distance 1 from a
given code word are not code words.

iii. Think of each code word along with its 7 neighbors as a cloud of 8 vertices of the 7-dimensional
cube. Argue that two of these clouds do not intersect.

iv. Now argue that the union of all 16 clouds is (Z2)7.

v. Use this to conclude that every non-code word has exactly one code word as an immediate
neighbor on the 7-dimensional cube.
This property allows us to correct a non-code word by replacing it with the unique code word
in its cloud – i.e., at Hamming distance 1 from it.

(c) Suppose you receive the string w = 0111101.

i. Argue that this is not in the Hamming code. (Use Problem 4(c)(iii).)

ii. Find the unique decoding of this string. Hint:Think about what went wrong in Pw and
which single digit you can change in w to get the unique code word at Hamming distance 1
from it. Remember, the matrix P from the handout is what we use to check if something is
a code word.

3. Kakeya sets*

Let F denote a finite field with q elements which we can think of as the integers mod q for some prime
number q, i.e., F = Zq. For example F = {0, 1} is the finite field with q = 2 elements which we called
Z2 before. The vector space Fn consists of all n-tuples of points (a1, a2, . . . , an) such that ai ∈ F for
all i = 1, . . . , n. Therefore, |Fn| = qn.

(a) For F = {0, 1} write down F3.

(b) A line in Fn is defined as follows: fix a point a ∈ Fn and a vector u ∈ Fn. Then the line through
a in direction u is

`a,u = {a + tu : t ∈ F}.
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For F = {0, 1}, compute all the lines in F3 that pass through a = (1, 0, 0). Note that each line
consists of 2 points, namely {a,a + u}. (Yes, this is weird. Vector spaces over finite fields are
very strange objects to work with and the fact that a line consists of just two points is definitley
strange.)

(c) A set K ⊂ Fn is called a Kakeya set if it contains a line in every possible direction.

These lines don’t have to go through the same point a, but for every u ∈ Fn there must be some
a ∈ Fn such that the line `a,u lies in K. Note that in Fn there are 2n possible directions, each
one given by a vector u ∈ Fn.

Use your computation in (b) to argue that there is a Kakeya set in F3 with 7 elements.

In what follows we will prove the baby case of the following theorem: If F is a finite field with q
elements, and K ⊆ Fn is a Kakeya set, then |K| ≥

(
q+n−1
n

)
.

From now on assume that F = {0, 1}, i.e., q = 2 (this is the baby case).

(d) What is the statement of the theorem when F = {0, 1}?

The trick to proving the theorem is to use polynomials in F[x1, . . . , xn]. A polynomial p(x) of
degree at most d in F[x1, . . . , xn] is a linear combination of monomials in x1, . . . , xn of degree at
most d and coefficients in F. It looks like

p(x) =
∑

cα1,...,αnx
α1
1 xα2

2 · · ·xαnn (16.3.1)

as (α1, . . . , αn) varies over all vectors in Nn whose sum is at most d, and the coefficients cα1,...,αn ∈
F. Here N denotes the natural numbers which is just the set of all positive (non-zero) integers
{1, 2, 3, ...}.

(e) Give two examples of polynomials in F[x1, . . . , xn] for your choices of n and d. Remember F =
{0, 1}.

Let F[x1, . . . , xn]≤d be the set of all polynomials in F[x1, . . . , xn] of degree at most d. Recall from

last week’s star problem that F[x1, . . . , xn]≤d is a vector space of dimension
(
n+d
d

)
.

(f) Now suppose a1, . . . ,aN are points in Fn whereN <
(
n+d
d

)
, and p(x) is a polynomial in F[x1, . . . , xn]

of degree at most d, like the one in equation (1) above. Consider the linear system of equations
in cα1,...,αn that you get by setting p(ai) = 0 for all i = 1, . . . , N . Argue that this system has at
least one non-zero solution. Equivalently, that there is at least one non-zero polynomial p(x) of
degree at most d such that p(ai) = 0 for all i = 1, . . . , N .
(Hint: Do an example with n = 3 to see what this system looks like.)

(g) We are now ready to prove the theorem in the case q = 2. Suppose K is a Kakeya set in Fn and
|K| <

(
n+1
n

)
= n + 1. Argue that there is a nonzero linear polynomial `(x) in F[x1, . . . , xn] that

vanishes at all points in K.
(Hint: This is a direct application of the previous result.)

Now that we have this linear polynomial, let’s assume that it looks like the following

`(x) = c0 + c1x1 + c2x2 + · · ·+ cnxn

where c0, c1, . . . , cn ∈ F.

(h) Take any nonzero u ∈ Fn. Since K is a Kakeya set, there is some a such that the line {a + tu :
t ∈ F} lies in K. Assume a = (a1, . . . , an) and u = (u1, . . . , un).
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i. Write out the polynomial f(t) := `(a + tu) in the single variable t using the formula for `.

ii. Check that f is a polynomial of degree at most 1 in t. What is the coefficient of t in f? Call
it β.

iii. Argue that f(t) = 0 for all values of t ∈ F using the definition of f and the property of ` from
part (g).

If f(t) = 0 for all values of t then f must be the zero polynomial which means that all its
coefficients are 0 and in particular, β = 0.

iv. Since u was any element of Fn and we just saw that β = 0, conclude that h(x) = c1x1 + · · ·+
cnxn vanishes on all u ∈ Fn.

Now we’ll invoke the following cool result to get our contradiction.

Schwartz-Zippel theorem: Any nonzero polynomial h of degree d can vanish on at most dqn−1

many points of Fn where F is a finite field with q elements.

(i) What does this theorem say about the polynomial h(x) = c1x1 + · · · + cnxn from the previous
part? (Remember q = 2.)

(j) Conclude that we have a contradiction and that the |K| cannot be smaller than n+ 1.

History: Kakeya sets over finite fields were inspired by the Kakeya conjecture in Rn which is still
open. A Kakeya set in Rn is a compact set K that contains a line segment of length 1 in every direction.
If you had a needle of length 1, you could rotate it continuously in all directions inside a Kakeya set
(sort of). See the Wikipedia page:

{\em https://en.wikipedia.org/wiki/Kakeya_set}

to see a Kakeya set. Also, google “Numberphile Kakeya Needle Problem” to see a video about this
problem. It turns out that Kakeya sets can have arbitrarily small area in R2 which is crazy!

The Kakeya conjecture says that a Kakeya set in Rn cannot be too small – it has Hausdorff dimension
n, whatever that is. This conjecture is open, but when phrased over finite fields you just showed using
linear algebra that indeed Kakeya sets in Fn cannot be too small. Sometimes it’s good to practice over
finite fields when you have a difficult problem over Rn. The Kakeya conjecture has been proved in R2.
Even though this problem seems like a silly puzzle it has surprisingly strong connections to many parts
of mathematics like number theory, partial differential equations, harmonic analysis etc.
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Chapter 17

Vector Spaces over C

The first key step to understanding vector spaces over C, is understanding the basics of C itself. After
introducing complex numbers, we move up to complex vectors, and finish with complex matrices and the
complex version of the spectral theorem. The problems for this section involve an introduction to Fourier
series and the fast Fourier transform.

17.1 Complex Numbers

Any complex number z ∈ C has the form z = a + bi where a, b ∈ R. i =
√
−1 denotes the imaginary unit

(i2 = −1). We call a the real part of z, denoted Re(z) and we call b the imaginary part of z, denoted Im(z).
We can also define addition and multiplication of complex numbers in the usual sense.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

One of the most useful notions attached to a complex number is its complex conjugate.

Definition 17.1.1. If z = a + bi then the complex conjugate of z, denoted z, is the complex number
z = a− bi.

Note that if z ∈ R then z = z. We can visualize numbers (and their conjugates) in the complex plane
with imaginary and real axes representing the lengths a and b as follows:
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z and z play nicely together and have four fundamental equations that relate the two. Namely

z + z = (a+ bi) + (a− bi) = 2a = 2Re(z) ∈ R

zz = (a+ bi)(a− bi) = a2 + b2 ∈ R

zw = zw and z + w = z + w

The notion of a complex conjugate also allows us to define the length (or modulus) of a complex number
as the real number

|z| =
√
zz =

√
a2 + b2

Note that
1

z
=

1

a+ bi
=
a− bi
a+ bi

1

a− bi
=

a− bi
a2 + b2

=
z

zz
=

z

|z|2
∈ C

and if a2 + b2 = |z| = 1 then 1
z = z.

When taking powers of complex numbers, as written, it can be computationally difficult. The polar
form of a complex number greatly reduces the difficulty in computing this and will be of central importance
moving forward.

Given any z ∈ C, we can write

z = |z|(cos θ + i sin θ) = r(cos θ + i sin θ) = reiθ

Given any complex number we can easily compute its real and imaginary parts using this formula.

Example 17.1.2. Let z = 3− 2i. We can see that |z| =
√

9 + 4 =
√

13 hence

z =
√

13(
3√
13
− 2√

13
i)

This means that cos θ = 3√
13

and sin θ = −2√
13

hence we can find θ via θ = cos−1
(

3√
13

)
= sin−1

(
−2√
13

)
Recall from last weeks homework problem that cos θ + i sin θ = eiθ, hence if z = r(cos θ + i sin θ) then

z = reiθ and we can easily compute powers of z. That is

zn = (reiθ)n = rneinθ = rn(cosnθ + i sinnθ)

Moreover, if |z| = 1, then r = 1 and zn = einθ. That is, zn is just z rotated by θ, n times. The polar form
tells us the all important fact that when you multiply two complex numbers you multiply the lengths
and add the angles.

Now that we have a grasp on the elements of C, we can look at vector spaces over C.

17.2 Complex Vectors and the Vector Space Cn

Define a complex vector to be z =

z1

...
zn

 ∈ Cn where zj = aj + ibj and aj , bj ∈ R. One can verify that Cn

is a vector space over C (meaning the scalars are all complex numbers) with vectors of the form z as above.
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Addition and scaling is defined similarly. If z =

z1

...
zn

 and w =

w1

...
wn

 then

z + w =

z1 + w1

...
zn + wn


and for a+ bi ∈ C we have

(a+ bi)z =

(a+ bi)z1

...
(a+ bi)zn


Similar to the notion of a conjugate for an element of C, we have the notion of conjugate transpose for

complex vectors (and matrices).

Definition 17.2.1. Given z =

z1

...
zn

 ∈ Cn, the conjugate transpose of z to be

z> =
[
z1 · · · zn

]
Given any complex number zi, recall that zizi ∈ R. We can expand on this idea and use conjugate

transposes to define norms of complex vectors. Given z ∈ Cn one can check that z>z ∈ R. We define the
norm of z to be the real number

||z|| =
√

z>z

To ease notation from here on out, we denote the conjugate transpose by z∗ = z>.

We make an important notational note here since norms (or lengths) of complex numbers and complex
vectors are denoted differently and must be handled with care. Given z ∈ C we have |z| =

√
zz whereas the

norm of a vector z ∈ Cn is denoted ||z|| =
√

z>z. This will come up several times and should be clear from
context whenever it arises.

Example 17.2.2. Let z =

[
2− i
3 + 5i

]
and z∗ =

[
2 + i 3− 5i

]
. We compute the norm of z squared via

z∗z =
[
2 + i 3− 5i

] [ 2− i
3 + 5i

]
= |2− i|2 + |3 + 5i|2 = 5 + 34

We can extend this idea further to define an inner product on Cn known as the Hermitian inner product.
It plays the same role that the dot product does on Rn.

Definition 17.2.3. Given u =

u1

...
un

 ,
v1

...
vn

 ∈ Cn we define their inner product to be

v∗u =
[
v1

... vn

]u1

...
un

 = v1u1 + · · ·+ vnun

We say that u and v are orthogonal if v∗u = 0, or equivalently, if u∗v = 0.
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Example 17.2.4. Let u =

[
1
i

]
and v =

[
i
1

]
, then

u∗v =
[
1 −i

] [i
1

]
= 0

Note that we can use this notion to define orthonormal sets as well. We say that u and v are orthonormal
if both u∗v = 0 and ||u|| = ||v|| = 1

Before defining complex matrices we note that the notion of conjugate transpose is more natural than
the notion of just tranposing when dealing with complex vectors. In general we can not always guarantee
that z>z is a real number, and the conjugation is needed.

17.3 Cm×n and the Complex Spectral Theorem

We can now (finally!) define complex matrices. We define a complex matrix to be A = (zij) ∈ Cm×n with
zij ∈ C for all i, j.

The notion of a conjugate transpose carries over identically from the previous section. That is, if A =
(zij) ∈ Cm×n then its conjugate transpose is given by

A∗ = (zji) ∈ Cn×m

Example 17.3.1. Let A =

[
1 i
0 1 + i

]
then the conjugate transpose is A∗ =

[
1 0
−i 1− i

]
.

We also mention that the usual properties of transpose carry over in the complex setting just like they
did before. Namely that

(Au)∗v = u∗(A∗v) and (AB)∗ = B∗A∗

We can now define the most important type of complex matrices.

Definition 17.3.2. A matrix A ∈ Cn×n is Hermitian if A = A∗. A consequence of this definition is that
every real symmetric matrix is Hermitian.

Example 17.3.3. If A =

[
2 3− 3i

3 + 3i 5

]
then A∗ =

[
2 3− 3i

3 + 3i 5

]
= A hence A is Hermitian.

As we had with symmetric matrices, Hermitian matrices have three important properies that combine to
give the main result of this section.

Proposition 17.3.4. If A is Hermitian and z ∈ Cn then z∗Az ∈ R.

Proof. Recall that if z ∈ C and z = z then z ∈ R. We know that z∗Az ∈ C so taking the conjugate tranpose
is the same as taking the conjugate. Applying this operation we see that

(z∗Az)∗ = z∗A∗(z∗)∗ = z∗A∗z = z∗Az

hence z∗Az equals its (conjugate) transpose, and z∗Az ∈ R.

Proposition 17.3.5. Every eigenvalue of a Hermitian matrix is real.

Proof. Assume that A∗ = A and Az = λz with λ ∈ C. Then from proposition 17.3.4 we know that

z∗Az = z∗λz = λz∗z = λ||z||2 ∈ R

Since ||z||2 ∈ R, we must have λ ∈ R as well.
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Example 17.3.6. Continuing the example from above with A =

[
2 3− 3i

3 + 3i 5

]
we have that

det(A− λI) = det
([2− λ 3− 3i

3 + 3i 5− λ

])
= λ2 − 7λ− 8 = (λ− 8)(λ+ 1)

Proposition 17.3.7. Let A be Hermitian and assume that Az = λz, Ay = βy with λ 6= β. We always
have y∗z = 0. That is, eigenvectors of a Hermitian matrix corresponding to different eigenvalues are always
orthogonal.

Proof. First, observe that
y∗Az = y∗λz = λy∗z

Furthermore, since Ay = βy we have that

(Ay)∗ = βy∗ =⇒ y∗A∗ = βy∗

Multiplying both sides of this equation by z on the right (and using the fact that A is Hermitian) we can
conclude that

y∗A∗z = y∗Az = βy∗z

Now that we have two equations involving y∗Az we combine them and see that

y∗Az = λy∗z = βy∗z =⇒ (λ− β)y∗z =⇒ y∗z = 0

since λ 6= β

Example 17.3.8. Carrying on with the same matrix from the previous two examples we have A =[
2 3− 3i

3 + 3i 5

]
with eigenvalues λ = 8 and λ = −1. The corresponding eigenvectors are z =

[
1

1 + i

]
and y =

[
1− i
−1

]
respectively. Computing their inner product we can see that

y∗z =
[
1 + i −1

] [ 1
1 + i

]
= (1 + i)− (1 + i) = 0

Furthermore, we can divide these vectors by their norms to obtain orthonormal vectors

z

||z||
=

1√
3

[
1

1 + i

]
and

y

||y||
=

1√
3

[
1− i

1

]
Since these vectors live in C2 we can conclude that they are actually an orthonormal basis (with respect
to the Hermitian inner product). This phenomenon always happens with Hermitian matrices. We have an
orthonormal basis of eigenvectors, therefore, we can diagonalize A by writing

A = Q

[
8 0
0 −1

]
Q∗

where

Q =
1√
3

[
1 1− i

1 + i −1

]
This matrix is special in that its conjugate transpose equals its inverse. This is a consequence of the fact
that its columns form an orthonormal basis and matrices like this deserve their own name.

Definition 17.3.9. A complex square matrix Q with the property that Q∗Q = QQ∗ = I is called a unitary
matrix. It is the complex analogue of an orthogonal matrix.

197



We can now combine all these ideas to end the chapter with the all important complex spectral theorem.

Theorem 17.3.10. If A ∈ Cn×n is Hermitian then

• All eigenvalues of A are real.

• Cn has an orthonormal basis of eigenvectors of A.

• If Q is the eigenvector matrix for A, then Q is unitary.

• A is unitarily diagonalizable, i.e. there exists a diagonal matrix Λ ∈ Rn×n and a unitary matrix Q
such that

A = QΛQ∗

Example 17.3.11. Writing out the unitary diagonalization for the matrix A =

[
2 3− 3i

3 + 3i 5

]
we get

[
2 3− 3i

3 + 3i 5

]
=

1√
3

[
1 1− i

1 + i −1

] [
8 0
0 −1

]
1√
3

[
1 1− i

1 + i −1

]
This theorem concludes the chapter but we note that there is much more to discover about the world

of complex matrices. Many of the nice theorems and properties we have seen with real matrices have their
complex analogues, and often times the statements for the complex setting simply involve interchanging the
word conjugate, with conjugate transpose, symmetric with Hermitian, and orthogonal with unitary.

17.4 Problem Set 9

1. (9.2 #8, #9)

(a) Which class of matrices does P belong to: invertible, Hermitian, unitary?

P =

0 i 0
0 0 i
i 0 0


(b) Compute P 2, P 3, P 100.

(c) What are the eigenvalues of P?

(d) Find the unit eigenvectors of P and put them into the columns of a unitary matrix U . Check
that any two of them are orthogonal. What property of P makes these eigenvectors orthogonal?

(e) Is PP ∗ invertible, Hermitian, unitary, psd?

2. (Inner products and norms) The notion of an inner product on a vector space is a central to many
areas of mathematics. In this problem, V stands for a vector space over C.

Definition 17.4.1. An inner product on V is a function that takes an ordered pair (u, v) of elements
of V to a number 〈u, v〉 ∈ C and satisfies the following properties:

• Positivity: 〈v, v〉 > 0 ∀v ∈ V, v 6= 0.

• Conjugate symmetry: 〈u, v〉 = 〈v, u〉 ∀u, v ∈ V .

• Linearity in the first slot: 〈λu+ µv,w〉 = λ〈u,w〉+ µ〈v, w〉 ∀u, v, w ∈ V, λ, µ ∈ C.

The usual dot product of two vectors in Rn defined as 〈u, v〉 = u>v is an inner product on Rn. Inner
products lead to notions of orthogonality and norm in V :
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Definition 17.4.2. • Two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0.

• The norm of a vector v ∈ V is defined to be ‖v‖ :=
√
〈v, v〉.

(a) The Hermitian inner product on Cn is given by 〈u, v〉 = v∗u.

i. Show that 〈u, v〉 = 〈v, u〉 for any two u, v ∈ Cn. Hint: Write u and v in coordinates and
compute both sides explicity.

ii. Check the remaining two properties of positivity and linearity in the first slot.

iii. Show that 〈u, λ1v + λ2w〉 = λ1〈u, v〉 + λ2〈u,w〉. We say that the Hermitian inner product
is conjugate linear in the second slot. Hint: To do this correctly, you will need to use
conjugate symmmetry AND linearity in the first slot. Alternatively, you could just do it in
coordinates and this second method doesn’t require using the other two properties of inner
products.

(b) The Cauchy-Schwarz inequality says that for any u, v ∈ Cn,

|〈u, v〉| ≤ ‖u‖‖v‖ (17.4.1)

i. Show why the Cauchy-Schwarz inequality holds in Rn with the usual dot product. Hint:
Recall that u>v = ||u|| ||v|| cos θ.

ii. The triangle inequality says that for all u, v ∈ Cn:

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (17.4.2)

A. Why is the triangle inequality true in Rn (with the usual dot product as inner product)?
Hint: Start with ‖u+ v‖2 = (u+ v)>(u+ v).

B. Show that for any z ∈ C, z + z = 2Re(z).

C. If u, v ∈ Cn check that ‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2Re〈u, v〉 where Re(a+ ib) = a, the real
part of the complex number a+ ib. Hint: Use part (B).

D. Show that the triangle inequality holds in Cn under the Hermitian inner product. That
is, that

||u+ v|| ≤ ||u||+ ||v||

(Hint: Argue that Re(〈u, v)〉 ≤ ||u|| ||v|| by using Cauchy-Schwarz (remember 〈u, v〉 is a
complex number). Then use part (C) to complete the square. Your answer should be a
string of inequalities starting with ||u+ v||2 and ending with (||u||+ ||v||)2.

(c) Let u1, . . . , un be an orthonormal basis for V with respect to an inner product that we denote by
〈−,−〉. In particular, ‖ui‖ = 1 for all i and 〈ui, uj〉 = 0 for all i 6= j. Given any a ∈ V we know
a ∈ span{u1, . . . , un} i.e there exist coefficients ci such that a =

∑n
i=1 ciui. Argue that

a = 〈a, u1〉u1 + · · · 〈a, un〉un.

That is, show that ci = 〈a, ui〉. Hint: Look at a as an arbitrary linear combination of the basis
vectors (like above) and take inner products of a with a reasonable choice of vectors.

In other words, the unique coefficients of a with respect to the basis u1, . . . , un are the inner
products 〈a, ui〉. Check for yourself that you secretly use this fact all the time – when we say
x ∈ Rn has coordinates x1, . . . , xn in the standard basis e1, . . . , en, we have that xi = x>ei. This
exercise allows an easy way to find the coordinates of a vector in V with respect to an orthonormal
basis of V .
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3. (Fourier series) In this problem let

V = {f : R→ C : f is piece-wise continuous, f(x) = f(x+ 2π) ∀x ∈ R, and

∫ π

−π
|f(x)|2 dx <∞}

In other words, V is the set of all piece-wise continuous functions from R→ C that are periodic with
period 2π. The last condition is a necessary one but after this part of the problem this condition will
not come up again. Examples of such functions are f(x) = sinx or g(x) = eix = cosx + i sinx. Note
that piece-wise continuous means that the function is continuous on intervals.

(a) Define an inner product between functions in V as follows:

〈f, g〉 =

∫ π

−π
f(x)g(x)dx

Check that under this inner product the norm of a function f ∈ V is ‖f‖ = (
∫ π
−π |f(x)|2dx)

1
2 .

(b) Argue that V is a vector space over R. You may assume that sums and multiples of piece-
wise continuous functions are piece-wise continuous, you just need to check that the latter two
conditions are preserved by sums and multiplication by scalars. Hint: You may want to use the
previous problem to check the last condition.

(c) Calculate the norm of the function f(x) = eikx where k is a fixed integer.

(d) Compute the inner product of the functions einx and eikx for two integers n, k. (You should get
two possible values depending on whether k = n or not. You may use the fact that for any integer

m,
∫ π
−π e

imxdx =

{
2π if m = 0
0 if m 6= 0

We will see why this is true in part (g).)

(e) Consider the following infinite set of functions in V :

φn(x) =
1√
2π
einx, n = 0,±1,±2,±3, . . .

Argue that the set of functions {φn} is orthonormal. That is, verify that 〈φn(x), φm(x)〉 = 0 ∀n 6=
m and that ||φn(x)|| = 1 ∀n.

(f) It turns out that the orthonormal functions {φn(x)} form a basis of V which means two things:

• V is an infinite dimensional vector space, and

• any f ∈ V can be written uniquely as an infinite series of the form

f(x) =

∞∑
−∞

cne
inx

This series is called the Fourier series of f and the coefficients cn are called the Fourier coef-
ficients of f .

Using the result of 2(c), show that cn = 1√
2π
〈f, φn〉.

(g) Show that the Fourier series of the periodic function f(x) = x when −π ≤ x ≤ π is

∑
n 6=0

(−1)n+1

in
einx
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Hints:
1) You’ll first need to show that you can integrate eix in the usual way, treating i as a scalar. To
do this, break it down in terms of sin and cos (treating i as a scalar) then conclude from basic
integration that

∫
eix = 1

i e
ix.

2) You will need to do some integration by parts. If you’re not in a calculus mood you can just
look up the needed integration formula.) Get PICS

Fourier series underlie Fourier Analysis which is the basis of Signal Processing in Electrical En-
gineering. All your Zoom calls work so well because of sophisticated signal processing — one of
the greatest applications of linear algebra.

This question and the next are based on Section 9.3 in Strang.

4. (The Discrete Fourier Transform) By the fundamental theorem of algebra, the polynomial equation
xn = 1 has n complex roots. These are called the nth roots of unity and they are denoted as ω0

n =
1, ωn, ω

2
n, . . . , ω

n−1
n . For example, the 4th roots of unity are 1, i,−1,−i, the solutions of z4 = 1.

(a) Check that ωn = e
2πi
n . (You need to check that ωkn is an nth root of 1 for all k = 0, . . . , n− 1, i.e.,

(ωkn)n = 1 for all k = 0, . . . , n− 1.)

(b) Write out all the 8th roots of unity and plot them on the unit circle in the complex plane.

(c) Show that 1 + ωn + ω2
n + · · · + ωn−1

n = 0 Hint: Use the factorization xn − 1 = (x − 1)(1 + x +
x2 + · · ·+ xn−1).

(d) The nth Fourier matrix is the following symmetric matrix:

Fn =


1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

...
...

...
...

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)2

n

 .

i. Write F4. Check that F4 is not Hermitian.

ii. Argue that 1
2F4 is unitary. (There are several different ways to do this) Note: In general,

1√
n
Fn is unitary.

iii. What is F−1
4 ? More generally, F−1

n ?

(e) Consider p(x) = a0 + a1x + a2x
2 + a3x

3 and a = (a0, a1, a2, a3) its vector of coefficients (a is a
column vector, we just write it as a row vector to save space). Compute F4a = â.

(f) More generally, suppose p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 is a univariate polynomial and
a = (a0, . . . , an−1) is its vector of coefficients (a is a column vector). Argue that the components
of Fna = â are, respectively, p(1), p(ωn), p(ω2

n), . . . , p(ωn−1
n ), the evaluations of p are the nth roots

of unity.

Comments:

• For any vector a ∈ Cn, the vector â = Fna is called the discrete Fourier transform of a.

• Computer scientists are interested in how fast you can compute something. It takes about
(2n)2 additions and multiplications to compute Fna and they would say that the computation
time is O(n2) steps after suppressing all the constants.
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• The Fourier transform is what allows you to zoom in on your phone, in addition to many
many other things.

(g) If we are given the evaluations of a degree n − 1 polynomial p(x) at the nth roots of unity, can
we find the polynomial? How would you do it using Fourier matrices?

Finding a polynomial from its values at specified points is called interpolation and has a huge
number of applications. For example, the temperature in an experiment might be an unknown
polynomial p(t) in the time t. If you measure the temperature at various times, and you have
enough measurements, you can use interpolation to find the temperature function.

5. (Fast Fourier Transform (FFT)) This problem builds on the previous problem. We are going
to show that there is a faster way to compute the discrete Fourier transform than by the straight
multiplication Fna. This in turn amounts to a clever recursive way to factorize Fourier matrices. See
Section 9.3 in Strang for this factorization point of view. As an application we will see a fast way to
multiply two polynomials together.

Assume throughout that n is a power of 2, say n = 2m. You can always pad your polynomial with terms
having 0 coefficient until it is a polynomial of degree 2m − 1, so there is no harm in this assumption.

(a) If n = 2m then what are
(i) (ωn)

n
4 ?

(ii) (ωn)
n
2 ?

(iii) (ωn)
3n
4 ?

(iv) (ωn)n?

(v) Show that ω
n
2 +k
n = −ωkn.

(vi) Show that ωn+k
n = ωkn.

(Use the n = 8 example from the previous problem as a guide.)

(b) Given p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1. Remember, we still have n = 2m. Define the
polynomials

p0(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

n
2−1 and p1(x) = a1 + a3x+ a5x

2 + · · ·+ an−1x
n
2−1.

i. Argue that p(x) = p0(x2) + xp1(x2).

ii. Argue that to compute the values of p(x) at 1, ωn, ω
2
n, . . . , ω

n−1
n it suffices to compute the

values of p0 and p1 at 1, (ωn)2, (ω2
n)2, . . . , (ωn−1

n )2.

iii. Argue that there are only n
2 elements in the list 1, (ωn)2, (ω2

n)2, . . . , (ωn−1
n )2.

iv. Suppose we use the method of discrete Fourier transforms from the previous problem to find
the values of p0 and p1 at these n

2 roots of unity. What is the size of the Fourier matrices you
would use and how would they look? Hint: Look at problem 4e and think about what part
of the fourier matrix they need to do this. You will not need the entire Fourier matrix
to find the values of p0, respectively p1.

(c) We can now devise a recursive algorithm that breaks p0 and p1 into two polynomials say p00, p01

and p10, p11 respectively, using the same rule as above, and then each of these into two further
polynomials and so on until we cannot break down any more. These can then be assembled back
to produce p. Break p(x) = a0 + a1x + a2x

2 + · · · + a7x
7 according to this recursive procedure

and check that you get back p.
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An aside: If this were a computer science class, we would calculate that this recursive divide-and-
conquer algorithm takes O(n log2 n) multiplications and additions to compute all the values of p
at the nth roots of unity. This is faster than O(n2). This is the method of Fast Fourier Transform
or FFT which was considered to be one of the top 10 algorithms of the 20th century.

Now we are going to apply this to multiply two polynomials together.

(d) Suppose you are given the following two polynomials:

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 and q(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1.

i. Argue that to compute p(x)q(x) you need about n2 operations (additions and multiplications).

ii. Here is the algorithm that uses FFT to speed up the computation of p(x)q(x). These are the
steps, your solution to this question will be using the algorithm on an example:

A. Compute the values of p(x) and q(x) at the 2n points 1, ω2n, ω
2
2n, . . . , ω

2n−1
2n which are

the 2nth roots of unity.

B. Compute the evaluation of pq at the same roots of unity by computing the products

(pq)(1) = p(1) · q(1)

(pq)(ω2n) = p(ω2n) · q(ω2n)

...

(pq)(ω2n−1
2n ) = p(ω2n−1

2n ) · q(ω2n−1
2n )

C. Now that we have the values of pq at the 2nth roots of unity use part (d) of problem 4
to find the polynomial pq.

If you have background in algorithms, you can check that this takes only O(n log2 n) steps.

Use the above procedure to multiply the polynomials:

p(x) = 1 + 2x+ 3x2 + 4x3, q(x) = x+ 2x2 + 3x3

and check your answer by multiplying them as usual.
While this was chosen to be doable by hand, you will need to take much larger values of n to
see the savings of this method.
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