
Math 318

Advanced Linear Algebra – Tools and Applications

Lecture Notes by Sam Roven & Rekha Thomas

July 2, 2021

Contents

1 Eigenvalues and Diagonalization 5
1.1 Eigenvalues and Eigenvectors . 5

1.1.1 The characteristic polynomial . 7
1.1.2 Arithmetic and geometric multiplicities . 8
1.1.3 Complex eigenvalues . 8
1.1.4 Eigenvalues of powers and inverses . 9

1.2 Diagonalization . 10
1.2.1 Applications of Diagonalization . 11

1.3 Similar Matrices . 12
1.4 Determinants and Permutations . 12
1.5 A Quick Primer on Logic . 14

2 Difference Equations 16
2.1 Fibonacci sequence . 16
2.2 The general setting . 17
2.3 Back to the Fibonacci sequence . 18
2.4 Fibonacci numbers and the golden ratio – an aside . 19

3 Markov Matrices 20
3.1 Longterm Behavior of Rental Cars . 20
3.2 Positive Markov Matrices . 21
3.3 Non-negative Markov Matrices . 24
3.4 Adjacency Matrices of Graphs . 25
3.5 Google Page Rank . 26

4 Orthogonality and Projections 30
4.1 Orthogonal Vectors and Subspaces . 30
4.2 Orthogonal complements . 34
4.3 Projections . 37
4.4 Linear Regression . 40

5 Symmetric Matrices 44
5.1 Eigenvalues and Eigenvectors of Real Symmetric Matrices . 44
5.2 The Spectral Theorem for Real Symmetric Matrices . 45
5.3 Diagonalization and change of basis . 47

6 Positive Semidefinite Matrices 48
6.1 Symmetric Matrices and Quadratic Forms . 48
6.2 Gram Matrices . 53
6.3 Application: Connectivity of a Graph . 54

1

6.4 Application: Spectral Clustering . 57
6.5 Application: Distance Realization . 60

7 Polynomial Vector Spaces 63
7.1 Univariate Polynomials . 63

7.1.1 The infinite-dimensional vector space R[x] . 63
7.1.2 The finite-dimensional vector space R[x]≤d . 64
7.1.3 Polynomial Interpolation . 64

7.2 Solving a Univariate Polynomial Equation . 66
7.3 Quotients of R[x] (Optional) . 68

7.3.1 Warm up: Integers mod 5 . 68
7.3.2 Polynomials mod p(x) . 69
7.3.3 Proof of the algorithm for solving a polynomial equation 70

8 Singular Value Decomposition 73
8.1 Structure of the SVD . 73
8.2 The Reduced SVD . 78
8.3 Three Immediate Consequences . 80

8.3.1 Rank One Decomposition . 80
8.3.2 Polar Decomposition . 81
8.3.3 Change of Bases . 81

8.4 Geometry of the SVD . 82
8.5 Application: Low Rank Approximations of a Matrix . 85
8.6 Best Fit k-Planes . 88
8.7 Application: Principal Component Analysis (PCA) . 91

9 Error Correcting Codes 95
9.1 Vector spaces over finite fields . 95
9.2 Hamming Code . 96

9.2.1 Encoding and Decoding Messages using the Hamming Code 99

10 Vector Spaces over C 100
10.1 Complex Numbers . 100
10.2 Complex Vectors and the Vector Space Cn . 101
10.3 Cm×n and the Complex Spectral Theorem . 103
10.4 Application: Fourier Analysis . 106

10.4.1 The Discrete Fourier Transform (DFT) . 107
10.4.2 The Fast Fourier Transform (FFT) . 107

2

Preliminaries

Introduction

• Math 318 vs Math 308: Math 318 is a second course in linear algebra that follows Math 308.
The course begins with a quick review of eigenvalues and diagonalization which is the last topic in
Math 308, and the only topic from Math 308 that we will revisit explicitly. You will be expected
to remember and use the concepts you learned in Math 308, so it will be helpful to have your
Math 308 notes and textbook handy. You can also find a full set of class notes for Math 308 at
samroven.com/linear. Unless explicitly stated, you are allowed to use any fact/theorem from Math
308 in solving problems in Math 318. To test your readiness for Math 318, please take the self diagnostic
test at https://sites.math.washington.edu/∼m318diagnostictest/ before the course.

• What is Math 318 about? The aim of this course is to further develop the properties of matrices,
linear maps and other concepts from linear algebra to a point where you start seeing some of the
powerful applications of the subject. Linear algebra is one of the most useful math languages in
modern day applications such as those in machine learning, big data, statistics, optimization, natural
sciences, social sciences and engineering. Many of you may have already encountered applications of
linear algebra. One of our aims will be to understand the mathematics behind these applications and
their algorithms.

In Math 308 you encountered matrices. Here is a rough classification of the different lives of a matrix
A ∈ Rm×n:

1. A matrix is a way to organize computation. For example if you want to solve a linear system of
equations, you express it as Ax = b and then solve the system via Gaussian elimination on the
augmented matrix

[
A b

]
.

2. A matrix can be thought of as a way to organize data. For example, consider the case where the n
columns of a matrix are indexed by different foods you commonly eat like granola bar, chocolate
milk, tofu scramble etc, the m rows by food groups such as protein, carbohydrate, fat etc, and the
entries in a column record the amount of protein, carbs, fat etc in one unit of the food indexing
that column. When you compute Ax where x is a vector whose entries are the amount of each
food you eat in a day, you see how much of each food group you are consuming that day.

3. A matrix A ∈ Rm×n also represents a linear map from Rn → Rm that sends x ∈ Rn to Ax ∈ Rm.
Many physical operations like projections, rotations, reflections etc can be encoded as linear
transformations, each represented by a matrix. This is a powerful use of matrices which can be
used to model many real world situations.

In Math 308 you encountered all these uses of matrices and there was a lot of emphasis on (1). In this
course, we will focus mostly on (3) and also (2).

3

Math Notation

• Rm×n := the vector space of all m× n matrices with real entries.

• Cm×n := the vector space of all m× n matrices with complex entries.

• 6= means “not equal to”, e.g., 2 6= 3.

• ∈ denotes “element of ”, e.g. 1 ∈ {1, 2, 3} means 1 is an element of the set {1, 2, 3}.
6∈ denotes “not element of ”, e.g. 5 6∈ {1, 2, 3} means 5 is not an element of the set {1, 2, 3}.

• ⊆ denotes “subset of” or “is contained in”, e.g. {1, 2} ⊆ {1, 2, 3} means the set {1, 2} is a subset of
the set {1, 2, 3}.

• ∀ denotes “for all”, e.g. ∀x ∈ Rn,x ∈ span{e1, e2, ..., en} translates to “For all vectors x in Rn, x is in
the span of e1 through en”.

• ∃ denotes “there exists”, e.g. If a is a multiple of b then ∃ some scalar r such that a = rb.

• : or | denotes the word “such that”, e.g. span{u1,u2, ...,un} denotes the set of all vectors of the form
a1u1 + a2u2 + · · ·+ anun such that ai are any real numbers. This is written as

span{u1,u2, ...,un} = {a1u1 + a2u2 + · · ·+ anun : ai ∈ R}

or
span{u1,u2, ...,un} = {a1u1 + a2u2 + · · ·+ anun | ai ∈ R}

• ⇒ means “implies”, e.g., The statement “if p is a prime number bigger than 2 then p is odd” can be
written as “p prime, p > 2 ⇒ p is odd”.

• ⇔ means “if and only if”, e.g., p even ⇔ p is a multiple of 2.

• Compact notation for a matrix A ∈ Rm×n (aij is the entry in row i and column j):

(aij) =

a11 a12 · · · a1n

...
... · · ·

...
am1 an2 · · · amn



Acknowledgments

These are informal lecture notes for Math 318, provided for your convenience. In particular, they are
brief and follow the class lectures closely. It is always advisable to consult linear algebra books if you
need more or multiple explanations of concepts. These notes closely follow Chapters 4,6,7,9, and 10
in the book Introduction to Linear Algebra, Fifth Edition by Gilbert Strang which is recommended
for this course. Many of the homework problems are inspired by (but not usually exactly) Strang’s
exercises. When this is the case, the problem number in Strang’s book is written next to the exercise.
These notes also draw from the book Thirty-three Miniatures by Jiri Matousek.

Caution!

These notes are a work in progress and may have errors. If you find mistakes or typos please let your
instructor know.

4

Chapter 1

Eigenvalues and Diagonalization

1.1 Eigenvalues and Eigenvectors

Consider the vector space Rm×n of all m × n matrices with entries in R. Being a vector space means that
the elements of Rm×n (which are matrices) satisfy the following under addition and scalar multiplication:

1. for all A,B ∈ Rm×n, their sum A+B ∈ Rm×n,

2. for any A ∈ Rm×n and scalar r ∈ R, the product rA ∈ Rm×n, and

3. the zero matrix 0 ∈ Rm×n.

The set of all square matrices of size n×n is denoted as Rn×n. The set of all diagonal matrices of size n×n
is a subspace of Rn×n. Every subspace is a vector space – it just happens to live in a bigger vector space.

A matrix A ∈ Rm×n represents the linear transformation from Rn to Rm, that sends x ∈ Rn to Ax ∈ Rm,
written as x 7→ Ax. It is usual to denote the linear transformation also by A and write A : Rn → Rm such
that x 7→ Ax. Note that A is used both to denote the linear transformation and its matrix representation.

Throughout this chapter we consider a square matrix A ∈ Rn×n. Then both x and its image Ax live in
Rn. Normally the vector x and its image Ax are not related in any simple way, but for some vectors x, it
may happen that Ax is simply a scaling of x. Such vectors tell us about parts (subspaces) of the domain
Rn that only scale (and hence remain fixed) under the action of A. This is important information about the
linear transformation A and brings us to the notion of eigenvalues and eigenvectors.

Definition 1.1.1. Let A ∈ Rn×n. If there exists a non-zero vector x ∈ Rn and some scalar λ ∈ R such that
Ax = λx we say that x is an eigenvector of A with eigenvalue λ.

Question: Should 0 ∈ Rn be allowed as an eigenvector of A? If yes, what would be its eigenvalue? Do
you see why the above definition requires eigenvectors to be non-zero?

Definition 1.1.2. The eigenspace of eigenvalue λ, denoted as Eλ, is the set of all vectors x ∈ Rn that
are eigenvectors of A with eigenvalue λ. Mathematically, Eλ = {x ∈ Rn : Ax = λx}.

It follows from the definition that Eλ = {x ∈ Rn : (A − λI)x = 0} = Null(A − λI) where the notation
Null(B) denotes the nullspace of the matrix B. Since Eλ is the nullspace of a matrix, it is a subspace of Rn.
Any vector in Eλ only scales by λ under the linear transformation A.

The nullspace of a square matrix is non-zero if and only if the matrix is singular (not invertible) which
is if and only if the determinant of the matrix is zero. Therefore, Eλ = Null(A − λI) 6= {0} if and only if
det(A− λI) = 0.

Proposition 1.1.3. A scalar λ ∈ R is an eigenvalue of A if and only if det(A− λI) = 0

5

This proposition enables the computation of all eigenvalues of A: Let the variable t denote an unknown
eigenvalue and set up the equation det(A − tI) = 0. On the left is a polynomial in t of degree n. Its roots
are the eigenvalues of A. The polynomial det(A− tI) is called the characteristic polynomial of A.

Question: Do you see why p(t) = det(A − tI) is a polynomial in t of degree n? Hint: Think of the
cofactor formula for computing a determinant. We’ll see more of this soon.

Example 1.1.4. Let A ∈ R2×2 be the matrix that represents reflection in R2 about the line y = x. This is
a linear transformation (check if you wish). Recall how one finds the matrix of a linear transformation.

Matrix of a linear transformation

Given a linear transformation T : Rn → Rm, the matrix for T can be written as[
T (e1) T (e2) · · · T (en)

]
where {e1, . . . , en} is the standard basis of Rn. Remember: A linear transformation is com-
pletely determined by where it takes a basis of the domain.

Using this fact, we find that the matrix representing the above reflection is A =

[
0 1
1 0

]
. Before we

compute the eigenvalues and eigenvectors of this matrix, let us see if we can just find them using geometry.
Which vectors are only scaled by the above reflection? There are two natural guesses based on geometry:

1. If x lies on the line y = x, then it remains unchanged under reflection about the line y = x and hence

all vectors of the form r

[
1
1

]
where r ∈ R is an eigenvector of A with eigenvalue 1.

2. If x is perpendicular to the line y = x then it goes to −x under this reflection. Therefore, all vectors

of the form r

[
−1
1

]
where r ∈ R is an eigenvector of A with eigenvalue −1.

We can now double check our predictions by solving the characteristic polynomial equation:

• Step 1: Compute that det(A− λI) = λ2 − 1.

• Step 2: Solving det(A− λI) = λ2 − 1 = 0 we find that the eigenvalues of A are λ = ±1.

• Step 3: For each λ, we find a basis of Eλ = Null(A− λI)

λ = 1 =⇒ A− I =

[
−1 1
1 −1

]
which has echelon form

[
−1 1
0 0

]

This gives the linear system −x1 + x2 = 0 =⇒ x1 = x2 and E1 = Span
{[1

1

]}
.

λ = −1 =⇒ A+ I =

[
1 1
1 1

]
which has echelon form

[
1 1
0 0

]
This gives the linear system x1 + x2 = 0 =⇒ x1 = x2 and E−1 = Span

{[−1
1

]}
.

Indeed, we had found all the eigenvalues and eigenvectors of A using geometry.

6

1.1.1 The characteristic polynomial

We now look at the characteristic polynomial more closely. Recall that p(λ) = det(A − λI) is a degree n
polynomial in the variable λ and its roots are the eigenvalues of A. (It is usual to use λ for the variable t
when we talk about characteristic polynomials, but you should remember that this λ is a variable and not
any particular eigenvalue.) By roots of a polynomial p(t) we mean the values of t for which p(t) = 0. What
can we say about the roots of the characteristic polynomial p(λ) or more generally, a univariate polynomial
p(t) of degree n? To fully understand this we need to recall complex numbers.

The imaginary i is defined to be the positive square root of −1, i.e., i2 = −1. An expression of the form
a + ib where a, b ∈ R is called a complex number, e.g., 2 + 3i,

√
5 − 2i. The set of all complex numbers is

denoted C. Real numbers are special cases of complex numbers, i.e., R = {a + 0i : a ∈ R}. Therefore,
R ⊆ C. The conjugate of a complex number a+ ib is a− ib, and the conjugate of a− ib is a+ ib. Check that
the conjugate of a real number a is a again.

We could do this whole course over C but for simplicity, and for the sake of geometry, we will stick to R.
Almost all the results we will see also hold for complex matrices with slight modifications. We will revisit
complex matrices and vector spaces at the end of this course.

Fundamental Theorem of Algebra

Let p(t) be a degree n polynomial in the variable t with complex numbers as coefficients. Then
p(t) has (counting multiplicities), precisely n complex roots µ1, . . . , µn. Equivalently, there is some
constant c ∈ C such that p(t) can be factored as

p(t) = c(t− µ1)(t− µ2) · · · (t− µn).

We make a few comments:

1. The multiplicity of a root µi is the number of times it appears as a root of p(t). If we denote the
multiplicity of µi by αi, then we can factor p(t) as

p(t) = c(t− µ1)α1(t− µ2)α2 · · · (t− µk)αk

where α1 + α2 + · · ·+ αk = n.

2. If all the coefficients of the polynomial p(t) are real, and a + ib is a complex root of p(t), then so is
a− ib which is called the complex conjugate of a+ ib. Do you see why? Try a small example.

Example 1.1.5. (a) p(t) = t2 − 1 = 0 =⇒ t = ±1 and t2 − 1 = (t− 1)(t+ 1).

(b) p(t) = 2t2 + 1 = 0 =⇒ t2 = − 1
2 =⇒ t = ± i√

2
and 2t2 + 1 = 2(t− i√

2
)(t+ i√

2
).

Notice that the coefficients of both polynomials above are real numbers. In the first case, p(t) has only
real roots and in the second case it has two complex roots that are conjugates.

3. If p(λ) = det(A−λI) is the characteristic polynomial of the square matrix A ∈ Rn×n then all coefficients
of p(λ) are real. However, the some roots of p(λ) may be complex and if so, they come in conjugate
pairs. The factorization in this case looks like

p(λ) = det(A− λI) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn).

Question: Do you see why (−1)n appears as the constant in front of the factorization?

This brings us to the first general fact about eigenvectors and eigenvalues of a matrix A ∈ Rn×n.

Theorem 1.1.6. A matrix A ∈ Cn×n (in particular, in Rn×n) has n eigenvalues (counting multiplicities).

Let’s recap why. The characteristic polynomial p(λ) = det(A − λI) of a matrix A ∈ Cn×n is a degree
n polynomial with complex coefficients. Therefore, by the Fundamental Theorem of Algebra it has n roots
(counting multiplicities) and these roots are the eigenvalues of A.

7

1.1.2 Arithmetic and geometric multiplicities

Definition 1.1.7. Suppose the characteristic polynomial of A factors as

p(λ) = det(A− λI) = (−1)n(λ− λ1)α1(λ− λ2)α2 · · · (λ− λk)αk

where α1 + α2 + · · ·+ αk = n and λ1, . . . , λk are the eigenvalues of A. The algebraic multiplicity of the
eigenvalue λi is the exponent αi, denoted as AM(λi).

Definition 1.1.8. The geometric multiplicity of the eigenvalue λi, denoted GM(λi), is the dimension of
the eigenspace Eλi , i.e., GM(λi) = dim(Eλi).

These two multiplicities are sometimes different as the following example shows.

Example 1.1.9. Let A =

[
8 −9
4 −4

]
. Check that p(λ) = (λ− 2)2 and AM(2) = 2. On the other hand,

A− λI =

[
8− λ −9

4 −4− λ

]
=⇒ A− 2I =

[
6 −9
4 −6

]
which shows that the columns of A− 2I are linearly dependent. Since it is not the zero matrix, we conclude
that rank(A − 2I) = 1 which implies that nullity(A − 2I) = 1. Hence, dim(E2) = dim(Null(A − 2I)) = 1,
and GM(2) < AM(2).

In general, we have the following relationship between the two multiplicities.

Proposition 1.1.10. For an eigenvalue λ of A ∈ Rn×n, GM(λ) ≤ AM(λ) always.

1.1.3 Complex eigenvalues

From the Fundamental Theorem of Algebra we know that some eigenvalues of a real matrix can be complex.
Rotation matrices are good examples of real matrices with complex eigenvalues. We have no easy way to see
geometry in complex eigenvectors since we can only draw in Rn, but we will develop some machinery later
that will provide insight.

Example 1.1.11. Let A denote the linear transformation that rotates any vector in R2 by π/2. Clearly
there is no real vector that is only scaled under rotation by π/2 and so we do not expect any real eigenvectors
for the matrix of this linear transformation.

Check that the matrix representing this rotation is

A =

[
0 −1
1 0

]
.

In general, the matrix that represents rotation in R2 by θ is

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

We compute the characteristic polynomial of A and see that

det

[
−λ −1
1 −λ

]
= λ2 + 1 = 0 =⇒ λ = ±i

Both eigenvalues are complex in this case. Further, Ei = Span

{[
i
1

]}
and E−i = Span

{[
1
i

]}
.

8

Example 1.1.12. Now suppose B denotes rotation in R2 by π rather than π/2. Then we do expect real
eigenvectors since every vector x ∈ R2 will simply flip sign and become −x under this rotation. Hence −1
is an eigenvalue and we might guess that E−1 = R2. Let’s confirm this with calculations.

We have three ways to compute B: (i) compute B using the standard basis of R2, or (ii) compute B
from the Rθ in the previous example by setting θ = π, or ((iii) we could obtain B from A by recalling that
the product of matrices corresponds to the composition of linear transformations. Since rotating by π is the
same as rotating twice by π/2, we have that

B = A2 =

[
−1 0
0 −1

]
and hence,

det

[
−1− λ 0

0 −1− λ

]
= (−1− λ)2 = (λ+ 1)2 = 0 =⇒ λ = −1 with AM(−1) = 2.

Therefore −1 is the only eigenvalue of B with arithmetic multiplicity 2, and B is the rare rotation matrix
with only real eigenvalues. Check that

E−1 = Null(A2 + I) = Null(−I + I) = Null(O22) = R2

and so our guess above was correct and GM(−1) = AM(−1) = 2.

1.1.4 Eigenvalues of powers and inverses

We now state a few general facts about eigenvalues and eigenvectors under various matrix operations. You
will derive more facts in homework.

1. If λ is an eigenvalue of A then λk is an eigenvalue of Ak, and if x is an eigenvector of A with eigenvalue
λ then it is also an eigenvector of Ak with eigenvalue λk.

Why?

Ax = λx =⇒ A2x = A(Ax) = Aλx = λAx = λ2x =⇒ A3x = A(A2x) = Aλ2x = λ2Ax = λ3x

Continuing with this process we can see that

Akx = A(Ak−1)x = Aλk−1x = λk−1Ax = λkx

Question: does this account for all eigenvalues of Ak?

2. If λ is an eigenvalue of A and A is invertible, then λ−1 = 1
λ is an eigenvalue of A−1.

Why? If Ax = λx, we can multiply both sides of this equation on the left by A−1 (which we know
exists!), and get x = A−1λx which implies that 1

λx = A−1x. Note that again the eigenvalues change
but the eigenvectors don’t.

In compact notation, we write a matrix A ∈ Rm×n as

A = (aij) =

a11 a12 · · · a1n

...
... · · ·

...
am1 am2 · · · amn

 .
Here is a quick notational refresher, which we will use a lot.

9

Definition 1.1.13. The transpose of a matrix A = (aij) ∈ Rm×n, denoted as A>, is the matrix obtained
by swapping rows and columns of A. That is A> = (aji) ∈ Rn×m.

Example 1.1.14. If A =

[
1 −1 0
3 1 −2

]
then A> =

 1 3
−1 1
0 2

.

In homework you will have to think about the relationship between the eigenvalues of A and A>.

1.2 Diagonalization

Definition 1.2.1. A matrix A ∈ Rn×n is diagonalizable if there exists an invertible matrix U ∈ Rn×n
and a diagonal matrix Λ ∈ Rn×n (Λ is the capital lambda) such that A = UΛU−1.

Suppose A = UΛU−1 where Λ = diag((λ1, λ2, . . . , λn). Then multiplying both sides by U on the right,
we get that AU = UΛ. if ui denotes the ith column of U , then this implies that Aui = λiui for each
i = 1, . . . , n. Therefore, λi, the entry in position (i, i) of Λ, is an eigenvalue of A with eigenvector ui, which
is the the ith column of U . For A to be diagonalizable, U needs to be invertible which means that A has to
have n linearly independent eigenvectors, i.e., Rn has a basis consisting of eigenvectors of A.

Theorem 1.2.2. A matrix A ∈ Rn×n is diagonalizable if and only if it has n linearly independent eigenvec-
tors.

Recall that the eigenvectors of A lie in the eigenspaces of A. We saw earlier that the dimension of the
eigenspace Eλ can be smaller than the multiplicity of λ. If this happens for some eigenvalue λ, then we will
not have enough linearly independent eigenvectors of A to span Rn and A will not be diagonalizable. So we
can write down a finer (equivalent) condition for diagonalizability as follows.

Theorem 1.2.3. A ∈ Rn×n is diagonalizable if and only if AM(λ) = GM(λ) for all eigenvalues λ.

We now look at three examples:

Example 1.2.4. Recall A =

[
0 1
1 0

]
from 1.1.4. The eigenvalues of this matrix were λ = ±1 with eigenspaces

E1 = Span
{[

1
1

]}
and E−1 = Span

{[−1
1

]}
. Using the basis vectors for our eigenspaces we obtain the

eigenbasis of R2 given by
{[

1
1

]
,

[
−1
1

]}
. A is therefore, diagonalizable:

A =

[
1 −1
1 1

] [
1 0
0 −1

] [
1 −1
1 1

]−1

In this example, AM(λ) = GM(λ) for both eigenvalues λ = ±1.

Example 1.2.5. Now consider the matrix B =

[
−1 0
0 −1

]
from Example 1.1.12. This matrix has only

one eigenvalue λ = −1 but since E−1 = R2 it has two linearly independent eigenvectors. Hence B is
diagonalizable. For instance, we could take the standard basis of R2 as two eigenvectors in E−1 and write

B =

[
−1 0
0 −1

]
=

[
1 0
0 1

] [
−1 0
0 −1

] [
1 0
0 1

]
.

Example 1.2.6. Here is an example of a matrix that is not diagonalizable. Let A =

[
6 −1
1 4

]
. Computing

eigenvalues and eigenvectors, we see the following:

det

[
6− λ −1

1 4− λ

]
= λ2 − 10λ+ 25 = (λ− 5)2 = 0 =⇒ λ = 5 with AM(5) = 2

10

Since eigenvalues are not distinct, A may not be diagonalizable. Computing the eigenspace of λ = 5,

E5 = Null

[
1 −1
1 −1

]
= Null

[
1 −1
0 0

]
= Span

{[1
1

]}
so GM(5) = 1 and AM(5) 6= GM(5). This means A is not diagonalizable.

In general, it takes some work to see if a matrix is diagonalizable. Here is a special case in which a matrix
is always diagonalizable.

Theorem 1.2.7. If A ∈ Rn×n has n distinct eigenvalues, then A is diagonalizable.

Proof. First note that if λi is an eigenvalue of A it must have some non-zero eigenvector x such that
Ax = λix. Moreover, for any x ∈ Eλi , we know that cx ∈ Eλi for any c ∈ R, thus if x ∈ Eλi then
Span{x} ⊆ Eλi . This means that for each eigenvalue λi, we have GM(λi) ≥ 1.

If A has n distinct eigenvalues, then we can list them out as λ1, λ2, . . . , λn and are guaranteed that
λi 6= λj for all i 6= j. This means that AM(λi) = 1 ∀i. From Proposition 1.1.10 we can conclude that

1 ≤ GM(λi) ≤ AM(λi) = 1

hence AM(λi) = GM(λi) ∀i. The result now follows from Theorem 1.2.3.

1.2.1 Applications of Diagonalization

Powers of matrices

Powers of diagonalizable matrices are very easy to compute. If A = UΛU−1 then

Ak = (UΛU−1)(UΛU−1) · · · (UΛU−1)︸ ︷︷ ︸
k times

= UΛkU−1

Recall that a power of a diagonal matrix is easy to compute: Λk = diag(λk1 , λ
k
2 , . . . , λ

k
n).

For the A in Example 1.1.4, we see that

A53 =

[
0 1
1 0

]53

=

[
1 −1
1 1

] [
1 0
0 −1

]53 [
1 −1
1 1

]−1

=

[
1 −1
1 1

] [
1 0
0 −1

] [
1 −1
1 1

]−1

=

[
0 1
1 0

]
A diagonalizable matrix behaves like a diagonal matrix

The action of a diagonal matrix Λ is very easy to understand, since it sends x to Λx = (λ1x1, λ2x2, . . . , λnxn)>.
Check this on an example. Diagonalizable matrices behave like diagonal matrices if we are willing to change
bases as we now explain. This is perhaps the greatest use of diagonalization!

Suppose A is diagonalizable and A = UΛU−1. This means that the columns of U which we denote by
u1, . . . ,un form a basis for Rn. Take a vector x ∈ Rn represented in the standard basis e1, . . . , en. Recall
that the coordinates of x in the basis U = {u1, . . . ,un} is the vector y such that Uy = x or alternately,
y = U−1x. This formula is extremely important to remember!

Change of basis formula

If a point in Rn has coordinates x with respect to the standard basis, then its coordinates with respect
to the basis U = {u1, . . . ,un} of Rn is y = U−1x, where U is the matrix whose ith column is ui.

11

Now suppose we use the basis U = {u1, . . . ,un} instead of the standard basis of Rn. Then the coordinates
of x with respect to the basis U is y = U−1x and the coordinates of Ax with respect to the basis U is

U−1Ax = U−1UΛU−1x = ΛU−1x = Λy.

Therefore in the U basis, a vector y is sent to Λy which rather simple to understand. In other words, the
action of the matrix A is the same as the action of the diagonal matrix Λ if we are willing to change the
basis of Rn from the standard basis to the eigenbasis U of A.

1.3 Similar Matrices

We finish the chapter with a completely new notion.

Definition 1.3.1. Two matrices A and C are similar, denoted as A ∼ C, if there exists an invertible matrix
B such that

A = BCB−1

There is one main example that probably comes to mind.

Example 1.3.2. If A is diagonalizable, then A = UΛU−1 for some U , and hence A ∼ Λ.

Theorem 1.3.3. If A ∼ C then A and C have the same eigenvalues.

Proof. If A ∼ C then ∃ an invertible matrix B such that A = BCB−1. Our goal is to show that A and C
have the same eigenvalues. Suppose Cx = λx, then since AB = BC we know that ABx = BCx, hence

A(Bx) = B(Cx) = Bλx = λBx

This implies that λ is an eigenvalue of A (with eigenvector Bx), hence all eigenvalues of C are also eigenvalues
of A. Similarly we could start with an eigenvalue of A and show that it is an eigenvalue of C. Therefore, we
have that the set of eigenvalues of C is a subset of the set of eigenvalues of A and the set of eigenvalues of
A is a subset of the set of eigenvalues of C. This means that the eigenvalues of A and C are the same. In
general, if F and G are two sets and F ⊆ G and G ⊆ F , then F = G. This is because, the assumptions imply
that F ⊆ G ⊆ F , but since the left and right ends are equal, it must be that there is equality throughout.

1.4 Determinants and Permutations

In this section we will see a fact about the determinant of a square matrix that you perhaps did not see in
Math 308. This will help us understand the characteristic polynomial a bit more.

You might know that the number called n factorial (written as n!) is 1×2×· · ·×(n−1)×n. A permutation
of the numbers 1, 2, . . . , n is an ordering of the numbers. For example, there are 2 = 2! permutations of
1, 2, namely 12 and 21 (we write the numbers in a string with no commas separating them). There are
6 = 1×2×3 = 3! permutations of 1, 2, 3, namely 123, 132, 213, 231, 312, 321. There are 24 = 4! permutations
of 1, 2, 3, 4. In general, there are n! = 1×2×· · ·× (n−1)×n permutations of 1, 2, . . . , n. You can also think
of a permutation as a function π : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}. For example, the permutation 1432 is
the function π that sends 1 7→ 1, 2 7→ 4, 3 7→ 3, 4 7→ 2, alternately, π(1) = 1, π(2) = 4, π(3) = 3, π(4) = 2.

It turns out that there is a close connection between all permutations of n (which is a short way of saying
all permutations of 1, 2, . . . , n) and the determinant of a square matrix. Let’s illustrate on the following 3×3
symbolic matrix:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
12

Computing the determinant of A by cofactor expansion (say along the first row) we have

det(A) = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

The above expression is a polynomial of degree 3 in the variables a11, . . . , a33. It consists of 6 terms and
each term is the product of a coefficient which is +1 or −1 and a monomial which is a product of variables.
For example, the second term in the above polynomial is −a11a23a32 whose coefficient is −1 and monomial
is a11a23a32. Notice the following facts:

• There are 3! terms in the determinant of the above 3× 3 matrix.

• Each monomial consists of three variables, one from each row and column of A (i.e., two variables in
a monomial do not come from the same row or same column and all rows and columns appear).

This makes us suspect that there is a term in the determinant for each permutation of 3. Let’s check.
First, note that we have already written each term so that the rows the variables come from are in the
order 1, 2, 3. We can always do this since every row contributes exactly one variable to a monomial and
multiplication of real and complex numbers is commutative. Once we have fixed the order of the rows to be
1,2,3, notice that the order in which the column indices appear in each monomial is a permutation of 3, and
all 6 = 3! permutations appear in the terms of the determinant. Let’s check on our example:

a11a22a33︸ ︷︷ ︸
123

− a11a23a32︸ ︷︷ ︸
132

− a12a21a33︸ ︷︷ ︸
213

+ a12a23a31︸ ︷︷ ︸
231

+ a13a21a32︸ ︷︷ ︸
312

− a13a22a31︸ ︷︷ ︸
321

The coefficient that appears in front of a monomial is also determined by the permutation of the column
indices. A pair i, j is said to be inverted in a permutation π if i < j but π(i) > π(j). For example in the
permutation 1432, 2 and 4 are inverted since π(2) = 4 > π(4) = 2 even though 2 < 4. We say that a
permutation is even if it has an even number of inverted pairs and odd if it has an odd number of inverted
pairs. The sign of a permutation is 1 if the permutation is even and −1 if the permutation is odd.

Notice that the coefficient in front of the term in the determinant indexed by a permutation π is exactly
the sign of π. For example take the third term −a12a21a33 which is indexed by the permutation 213. There
is exactly one inversion in this permutation which is given by the pair (1, 2) since π(1) = 2 > π(2) = 1. The
pairs (1, 3) and (2, 3) are not inverted in this permutation. Therefore, this is an odd permutation and its
sign is −1 which is the coefficient of the term −a12a21a33. Check every term in the above determinant and
make sure you agree that the coefficient in front of the term in the determinant indexed by a permutation
π is exactly the sign of π. Let’s check that the same behavior can be seen in 2× 2 matrices:

Example 1.4.1.

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21

The first term corresponds to the permutation 12 with sign 1, and the second term corresponds to the
permutation 21 with sign −1.

This brings us to the following general theorem (which we will not prove):

Theorem 1.4.2. If A = (aij) ∈ Rn×n, then

det(A) =
∑

π permutation of n

sign(π)a1π(1)a2π(2) · · · anπ(n).

This formula helps us understand the characteristic polynomial of a matrix even more. Let’s take the
3× 3 matrix A from above again. Then:

p(λ) = det(A− λI) = det

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

 .

13

The term in the determinant indexed by the permutation 123 is (a11 − λ)(a22 − λ)(a33 − λ) = −λ3 + · · · No
other term in the determinant contributes a λ3 or even λ2, only lower powers of λ, so the λ3 we got from
the first term will not cancel out (write out the determinant and check!). Therefore, p(λ) is a polynomial in
λ of degree 3 and the coefficient of λ3 is (−1)3 = −1.

Do you now see why if A ∈ Rn×n, then p(λ) = det(A− λI) is a degree n polynomial in λ and its leading
coefficient is (−1)n? Hint: As above, look at the term in the determinant indexed by the permutation
123 · · ·n. What is the coefficient of this term and what is the highest power of λ in it and why does this
highest power not cancel out when you take all terms together?

1.5 A Quick Primer on Logic

In this last section, we give a quick and simple introduction to making logical arguments in mathematics.
You will be asked to show that a statement “P” implies the statement “Q”, written as P =⇒ Q and
read as “P implies Q” or “if P then Q”. The statement P is the hypothesis (which is always true) and the
statement Q is the conclusion. While no formal proof writing skills are expected in this course, you will
often be asked to argue that something is true or false. Here are three common ways to make such arguments.

Direct: The direct method is the most straightforward. Given an if-then statement of the form P =⇒ Q,
one assumes the hypothesis P and works to conclude Q.

Example 1.5.1. Fix a matrix A ∈ Rm×n and let S =
{

x ∈ Rn : A2x = Ax
}

. Argue that if x,y ∈ S, then

x + y ∈ S.
Here P is “x,y ∈ S” and Q is “x + y ∈ S”. Doing this directly, we assume that x,y ∈ S and want to

conclude that x+y ∈ S. Since x,y ∈ S we know that A2x = Ax and A2y = Ay. Adding them up, we check
that they are still in S:

A2(x + y) = A2x +A2y = Ax +Ay = A(x + y)

Note that the second equality is where we used our assumption P . The rest came from matrix algebra.

The next method is often a good idea when the direct method looks hard.

Contrapositive: Given the statement,“if P then Q”, its contrapositive is the statement “ if Q is false
then P is false” written as ∼ Q⇒∼ P .

Indeed, P ⇒ Q says that Q is true whenever P is true. This is the same as saying that if Q is false, then
P must have been false too.

It is important to note that P ⇒ Q is NOT the same as either Q ⇒ P or ∼ P ⇒∼ Q. For example,
consider the following true statement “ if p is a multiple of 4 then p is even”. Here P is “p is a multiple of
4” and Q is “p is even”. The contrapositive ∼ Q =⇒ ∼ P is “if p is not even then p is not a multiple of 4”
which is true. Check that the following are NOT true:

Q =⇒ P : p even =⇒ p is a multiple of 4
∼ P =⇒ ∼ Q: p not a multiple of 4 =⇒ p is not even

Example 1.5.2. Consider the statement, “if x2 − 6x+ 5 is even, then x is odd”. In doing this directly, we
would assume that there is some number a such that x2 − 6x + 5 = 2a but then we would need to show
that x = 2b + 1 for some number b, and this feels hard. It turns out the contrapositive makes this much
more tractable. The contrapositive statement is that “if x is not odd, then x2− 6x+ 5 is not even”, in other
words, “if x is even, then x2− 6x+ 5 is odd”. Assuming that x = 2a for some number a, we plug it into the
equation and get that

(2a)2 − 6(2a) + 5 = 4a2 − 12a+ 4 + 1 = 2(2a2 − 6a+ 2) + 1

If we set b = 2a2−6a+ 2 then the last expression above is of the form 2b+ 1 which is odd and so x2−6x+ 5
is odd.

14

The last technique has a slightly different flavor but can also be very effective if you’re stuck.

Contradiction: Suppose we need to prove that P ⇒ Q. If by assuming P is true and Q is false we are
able to get a contradiction (an obviously false statement), then it must be that something in our assumption
was wrong. Since the hypothesis P is never wrong, it must be that assuming “Q is false” was wrong. We
then conclude that if P is true then Q is also true.

Example 1.5.3. Consider the statement, “If {x1, . . . ,xm} is a basis for Rn, then m = n”. Here P is
“{x1, . . . ,xm} is a basis of Rn” and Q is “m = n”. To prove what we want by contradiction we assume
“{x1, . . . ,xm} is a basis of Rn” and m 6= n. The latter means that either n < m or n > m. We consider
both cases:

• If n < m then we have more than n vectors and no set of more than n vectors can be linearly
independent in Rn. Therefore, {x1, . . . ,xm} is not a basis of Rn which contradicts our assumption.

• If n > m, then we have a basis for Rn consisting of fewer than n vectors, but no set of fewer than n
vectors can ever span Rn, giving us another contradiction.

Therefore, our assumption that m 6= n must have been false and we conclude that if {x1, . . . ,xm} is a basis
for Rn, then m = n.

Here are two further logic facts:

When are two sets equal: By definition, two sets, A and B, are equal if every element of A is also an
element of B, and similarly, every element of B is an element of A. If only one of these conditions hold, say
every element of A is an element of B, but not every element of B is an element of A, then we say A is a
subset of B and write A ⊆ B.

The key idea to prove that A = B is to take an arbitrary element of one set, and show it belongs to the
other, and then repeat the process in the other direction, i.e., we need to show the following:

1. Pick an arbitrary element a ∈ A, and show that a ∈ B. Since a was arbitrary, we conclude that every
element of A lies in B and so A ⊆ B.

2. Similarly, pick an arbitrary element b ∈ B and show that b ∈ A. This shows that B ⊆ A.

Picking an arbitrary element means picking an element that has the property specified in the hypothesis P
but nothing more. For example, if P says that “x is even”, then set x = 2a which is the general representation
of an even number. Don’t pick x = 4a or x = 10 since these represent only some even numbers.

To summarize, we have that A = B if and only if A ⊆ B and B ⊆ A. We saw this in action in the proof
of Theorem 1.3.3. This will prove to be useful a number of times throughout the course. Remember, at its
core, many of the things we look at are sets! For example, Col(A),Row(A),Null(A),Range(T), and ker(T)
are all sets, so if we want to argue that any two of them are equal, we use the above method.

15

Chapter 2

Difference Equations

In this chapter we see an application of diagonalization to solving difference equations. We will develop the
theory we need by working out an example. The material in this chapter comes from Strang’s Chapter 6.2.

2.1 Fibonacci sequence

You might have heard of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . defined recursively as follows: if Fk
denotes the kth Fibonacci number, where k = 0, 1, 2, 3, . . ., then

F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk.

This recursive definition let’s us enumerate any Fibonacci number we want

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 33, F10 = 54, . . .

The numbers get large relatively quickly and it becomes cumbersome to use the recursive definition to find
a large Fibonacci number like F100. However, linear algebra makes this easy as we now see.

Define wk :=

[
Fk+1

Fk

]
which means that wk+1 =

[
Fk+2

Fk+1

]
. Check that wk and wk+1 can be related via

multiplication by a matrix A. Indeed, if A =

[
1 1
1 0

]
, then Awk = wk+1. Let’s check:

Awk =

[
1 1
1 0

]
wk =

[
1 1
1 0

] [
Fk+1

Fk

]
=

[
Fk+1 + Fk
Fk+1

]
=

[
Fk+2

Fk+1

]
= wk+1.

Now suppose we start this process with w0 =

[
1
0

]
. We know that Aw0 = w1 and multiplying both sides

of this equation with A we see that

w2 = Aw1 = A(Aw0) = A2w0

Continuing to multiply by powers of A on both sides, we see that wk = Akw0 and hence w100 = A100w0.
Recall that we can “easily” compute A100 if A is diagonalizable.

We find the eigenvalues of A by computing the roots of its characteristic polynomial:

det(A− λI) =

[
1− λ 1

1 −λ

]
= −λ(1− λ)− 1 = λ2 − λ− 1 = 0

16

which yields the eigenvalues λ1 = 1+
√

5
2 ∼ 1.618 and λ2 = 1−

√
5

2 ∼ −0.618. Now computing eigenvectors we

get that u1 =

[
λ1

1

]
is an eigenvector of λ1 and u2 =

[
λ2

1

]
is an eigenvector of λ2. Since {u1,u2} is a basis

of R2, we can diagonalize A and write A = UΛU−1. This means that

wk = Akw0 = UΛkU−1w0

Putting everything together we have that[
F101

F100

]
= w100 = A100w0 = UΛ100U−1

[
1
0

]
= U

[
(1+
√

5
2)100 0

0 (1−
√

5
2)100

]
U−1

[
1
0

]
.

Multiplying everything out we could find F100, but this still requires some matrix computations and com-

puting Λ100 is not too easy in this example since it requires finding (1+
√

5
2)100 and (1−

√
5

2)100.

We will now see that there is an easier way to find F100. In fact, there is a closed form expression for the
kth Fibonacci number Fk purely in terms of the eigenvalues and eigenvectors of A.

2.2 The general setting

Before we start, we point out an important interpretation of matrix-vector multiplication. These are very
useful facts that we will need over and over again in this class. Please test these facts on some examples and
make sure you understand these interpretations very very well.

Matrix-vector multiplication as a linear combination of columns/rows

Let A ∈ Rm×n with columns a1, . . . ,an and rows b>1 ,b
>
2 , . . . ,b

>
m where ai ∈ Rm and bj ∈ Rn.

• The vector Ax is the linear combination of the columns of A by x1, x2, . . . , xn. It is a column
vector whose ith entry is the dot product of the ith row of A with x. Mathematically, if
A =

[
a1 a2 · · · an

]
∈ Rm×n and x = (x1, x2, . . . , xn)>, then Ax = x1a1 +x2a2 + · · ·+xnan

and (Ax)i = b>i x.

• The vector y>A is the linear combination of the rows of A by y1, . . . , ym. It is a row vector whose
jth entry is the dot product of y and the jth column of A. Mathematically, if y = (y1, . . . , ym)>

and A =


b>1
b>2
...

b>m

 ∈ Rm×n, then y>A = y1b
>
1 + y2b

>
2 + . . .+ ymb>m and (y>A)j = y>aj .

Using the above (check!) we get the following two very useful facts about the Col(A), the column space
of A which is the span of the columns of A, and Row(A), the rowspace of A which is the span of the rows of A:

Column and row space of a matrix

Col(A) = {Ax : x ∈ Rn} ⊆ Rm and Row(A) = {y>A : y ∈ Rm} ⊆ Rn

Now let’s come back to difference equations. Suppose a matrix A ∈ Rn×n sends an initial state vector
w0 to the kth state vector, wk via the relation Akw0 = wk. Recall that we got this from the difference
equation Awk = wk+1 that related two consecutive states of some system whose kth state vector is wk. If

17

A is diagonalizable, then A = UΛU−1 and wk = Akw0 = UΛkU−1w0.

Now set c := U−1w0. Recall that in the eigenbasis of Rn consisting of the columns of U , the coordinates
of w0 is c = U−1w0. You can find the vector c by solving the system Uc = w0.

Now consider wk = Akw0 again where we substitute c for U−1w0:

wk = UΛkU−1w0 = UΛkc =
[
u1 u2 · · · un

]

λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn



c1
c2
...
cn



=
[
u1 u2 · · · un

]

λk1c1
λk2c2

...
λkncn

 = c1λ
k
1u1 + c1λ

k
2u2 + · · ·+ cnλ

k
nun

which expresses the kth state vector wk as a linear combination of the eigenvectors u1, . . . ,un of A. The
scalars involved in the combination come from the eigenvalues of A as well as the vector c. We summarize
the above calculations in the following proposition.

Proposition 2.2.1. Suppose we have a difference equation Awk = wk+1 with initial state vector w0 and
A ∈ Rn×n. Then wk = Akw0. If A is diagonalizable then we can explicitly solve for wk as:

wk = c1λ
k
1u1 + c2λ

k
2u2 + · · ·+ cnλ

k
nun = Σni=1ciλ

k
i ui.

In the above expression, the vector c = (c1, c2, . . . , cn)> is the solution of the linear system Uc = w0, and
the vectors u1,u2, . . . ,un are independent eigenvectors of A with eigenvalues λ1, λ2, . . . , λn.

2.3 Back to the Fibonacci sequence

Now let’s come back to computing F100. Solving Uc = w0, we see that

c =

[1
λ1−λ2−1
λ1−λ2

]
.

Therefore,

wk =
1

λ1 − λ2︸ ︷︷ ︸
c1

λk1

[
λ1

1

]
︸ ︷︷ ︸
u1

+
−1

λ1 − λ2︸ ︷︷ ︸
c2

λk2

[
λ2

1

]
︸ ︷︷ ︸
u2

=


λk+1
1 −λk+1

2

λ1−λ2

λk1−λ
k
2

λ1−λ2

 .
In particular, you can check that

w0 =

[
1
0

]
=

1

λ1 − λ2︸ ︷︷ ︸
c1

[
λ1

1

]
︸ ︷︷ ︸
u1

− 1

λ1 − λ2︸ ︷︷ ︸
c2

[
λ2

1

]
︸ ︷︷ ︸
u2

.

Since Fk is the second coordinate of wk =

[
Fk+1

Fk

]
, we conclude that

Fk =
λk1 − λk2
λ1 − λ2

.

18

What happens as k goes to infinity, i.e., what is limk→∞wk = limk→∞ c1λ
k
1u1 + c1λ

k
2u2?

Since λ2 = −0.618 ∈ [−1, 0], limk→∞ λk2 = 0. Therefore,

lim
k→∞

c1λ
k
1u1 + c1λ

k
2u2 = lim

k→∞
c1λ

k
1u1 =

(
lim
k→∞

c1λ
k
1

)
u1.

This means that wk becomes proportional to the first eigenvector u1 in the long run. Looking back at the

formula for Fk we also see that in the long run, Fk ∼ λk1
λ1−λ2

= 1√
5

(
1+
√

5
2

)k
.

The key observation is that in this Fibonacci example, the second eigenvalue of A tended to 0 as k got
large and wk limits to a multiple of the first eigenvector u1 of A. In other words, the long term behavior
of wk is controlled by the eigenvector that had the largest eigenvalue (called the dominant eigenvector and
eigenvalue). Keep this in mind as we go to the next chapter where we will see situations in which the
dominant eigenvalue and eigenvector are guaranteed to control long term behavior of states.

2.4 Fibonacci numbers and the golden ratio – an aside

Definition 2.4.1. The golden ratio, denoted by the greek letter φ, is defined to be φ = 1+
√

5
2 . It is also a

root of the quadratic polynomial x2 − x− 1.

The golden ratio came about from the idea of trying to draw the “perfect” rectangle, that is, a rectangle
that was the most pleasing to the human eye. It appears everywhere in nature and is intimately related to
the Fibonacci sequence. Recall that φ is the dominant eigenvalue of the matrix A in the Fibonacci example.

Suppose we were a plant, one that grows upwards and has leaves coming off of its main stem. How would
we grow more and more leaves and ensure that the leaf spacing maximized sunlight on the surface of our
leaves? We could start with leaf 1, and then rotate halfway around the stem to let leaf 2 grow there. That
is, leaf 2 is a rotation of 1

2 units around the stem from leaf 1. Next, we would want leaf 3 to be positioned
so it does not block too much sunlight from leaves 1 and 2. If we drew a picture and though about it for
a bit, we would end up rotating 3

5 units away from leaf 2. How about leaf 4? We would rotate this one 5
8

units from leaf 3. Assuming the plant was immortal, we would continue this process indefinitely, with a new
spacing for each leaf.

What would happen as we proceed? If we write it out we see that the we obtain a sequence of fractions
1
2 ,

3
5 ,

5
8 , . . . ,

Fk
Fk+1

and the limit of this sequence as k tends to infinity is

lim
k→∞

Fk
Fk+1

=
1

φ

In other words, limk→∞
Fk+1

Fk
= φ, the golden ratio!

19

Chapter 3

Markov Matrices

In this chapter we will look at the eigenvalues and eigenvectors of positive and nonnegative matrices. Our
focus will be on a subset of positive and non-negative matrices that are said to be Markov. We will see several
applications where difference equations involving Markov matrices arise. The eigenvalues and eigenvectors
of Markov matrices have special properties which play a crucial role in these applications. This material is
based on Strang’s Chapter 10.3.

Let’s start with an example that allows us to practice what we learned about solving difference equations
in the last chapter.

3.1 Longterm Behavior of Rental Cars

Suppose we want to understand the behavior of rental cars in Seattle. Cars are constantly being rented in
Seattle and returned elsewhere, and cars from elsewhere are being returned in Seattle. Suppose:

• At the start 2% of all rental cars are in Seattle (i.e., fraction of cars in Seattle is 0.02 and fraction
outside Seattle is 0.98).

• Every month 20% of Seattle cars leave and 5% of outside cars come in.

Question 3.1.1. What fraction of rental cars are in Seattle in the long run?

Step 1: Define the kth state vector of rental cars to be wk whose first coordinate is the fraction of
cars in Seattle and second coordinate is the fraction of cars outside Seattle at the end of month k. Then

w0 =

[
0.02
0.98

]
.

Step 2: Determine w1. Since 20% of cars leave every month and 5% come in, we know that after one
month the fraction of cars in Seattle is

(0.8)(0.02) + (0.05)(0.98)

and the fraction of cars outside Seattle is

(0.2)(.02) + (0.95)(0.98)

Therefore,

w1 =

[
(0.8)(0.02) + (0.05)(0.98)
(0.2)(0.02) + (0.95)(0.98)

]
=

[
0.8 0.05
0.2 0.95

]
︸ ︷︷ ︸

A

[
0.02
0.98

]
︸ ︷︷ ︸

w0

20

Step 3: Using the same reasoning as in the Fibonacci example, we can conclude that at the end of month

k, our kth state vector is wk = Akw0. The eigenvalues and eigenvectors of A are

λ1 = 1,u1 =

[
0.2
0.8

]
λ2 = 0.75,u2 =

[
−1
1

]
Check that

w0 = 1

[
0.2
0.8

]
+ 0.18

[
−1
1

]
Now we apply the result in Proposition 2.2.1 to find wk. From the expression for w0, we get that c1 = 1

and c2 = 0.18. Therefore,

wk = (1)(1k)

[
0.2
0.8

]
+ (0.18)(0.75)k

[
−1
1

]
︸ ︷︷ ︸

→0 as k→∞

Once again, since the second eigenvalue 0.75 is between 0 and 1, its powers (0.75)k will tend to 0 as k goes

to infinity. Further the dominant eigenvalue is 1, and limk→∞wk =

[
0.2
0.8

]
. Therefore, in the long run, 20%

of cars end up in Seattle. Once again, in the limit, wk is proportional to the dominant eigenvector of A.

3.2 Positive Markov Matrices

Definition 3.2.1. Let A = (aij) ∈ Rm×n.

• A is a positive matrix, denoted A > 0, if aij > 0 for all i, j.

• A is a non-negative matrix, denoted A ≥ 0 if aij ≥ 0 for all i, j.

• A is Markov (also known as stochastic) if A is non-negative and the entries in each column of A add
up to 1, i.e., aij ≥ 0 ∀i, j and

∑m
i=1 aij = 1 ∀j.

• A is a positive Markov matrix if it is positive and the entries in each column of A add up to 1, i.e.,
aij > 0 ∀i, j and

∑m
i=1 aij = 1 ∀j.

Example 3.2.2. The matrix A =

[
.8 .05
.2 .95

]
in the rental car example is positive Markov. The matrix

A =

[
1 1
1 0

]
in the Fibonacci example is non-negative but neither positive nor Markov.

Let us first develop some facts about Markov matrices. Suppose 1 = (1, 1, · · · , 1)> is the vector of all
ones. Recall from the facts about matrix-vector multiplication that the condition that all columns of a
matrix A adds up to 1 is the same as saying 1>A = 1>. Therefore, if A is Markov then 1>A = 1>. We
argue the following about powers of positive Markov matrices.

Lemma 3.2.3. If A is positive Markov then Ak is also positive Markov.

Proof. Suppose A is positive Markov and v is a non-negative vector that is not 0. Then

1. Av > 0 since each entry of Av is the dot product of a row of A which is all positive with a non-negative
vector whose entries are not all zero.

2. If further, 1>v = 1 (i.e., the entries of v add to 1), then 1>Av = 1>v = 1 which means that the
entries of Av also sum to 1.

21

Now consider A2 = A
[
a1 a2 · · · an

]
. The jth column of A2 is Aaj . Since A is positive Markov and

aj is a column of A, aj > 0 and its entries sum to 1. So thinking of aj as the v in the previous paragraph
we get that Aaj > 0 and its entries sum to 1. Thus we have shown that A2 is positive Markov. Repeating
this argument we get that Ak is positive Markov.

Theorem 3.2.4. (Perron’s theorem for positive matrices) If A > 0 then A has a dominant eigenvalue
λA with the following properties:

1. λA > 0 and it has an eigenvector uA > 0 (has all positive entries) called a dominant eigenvector of A.

2. AM(λA) = 1.

3. If µ is another eigenvalue of A, then |µ| < λA.

4. If µ is a non-dominant eigenvalue of A, then it has no eigenvector that is non-negative.

The proof of this theorem is beyond the scope of this class, so we will just accept it. If you are interested,
a proof can be found in the book Numerical Linear Algebra by Lloyd Trefethen and David Bau. The above
theorem says more if A is a positive Markov matrix.

Theorem 3.2.5. (Perron’s theorem for positive Markov matrices) If A is positive Markov then A
has all the properties stated in Theorem 3.2.4, and in addition:

1. λA = 1 and thus if µ is another eigenvalue of A, then |µ| < 1.

2. If w0 ≥ 0 and wk = Akw0, then limk→∞Akw0 = cuA where c ≥ 0.
In other words, the in the long run, wk tends to a non-negative multiple of uA.

Example 3.2.6. Recall that in the rental car problem, wk tends to uA =

[
.2
.8

]
which is the dominant

eigenvector of the positive Markov matrix A =

[
.8 .05
.2 .95

]
in that problem. The dominant eigenvalue was

indeed 1 and the other eigenvalue 0.75 is smaller than 1 in absolute value. The constant c = 1.

We prove Theorem 3.2.5 using Theorem 3.2.4.

Proof. 1. Let A be a positive Markov matrix and let 1 be the vector of all ones as before. Since the column
entries of A sum to 1, the row entries of A> sum to 1 which means A>1 = 1. Hence 1 is an eigenvalue
of A> with eigenvector 1. Since A> is a positive matrix, it can have only one positive eigenvector by
part 4 of Theorem 3.2.4 and this eigenvector is the dominant eigenvector of A>. Therefore, 1 is the
dominant eigenvector of A> and 1 is the dominant eigenvalue of A>. Since A and A> have the same
eigenvalues their biggest eigenvalues are also the same. We conclude that λA = 1.

The second part of the statement follows from Theorem 3.2.4.

2. To prove the second statement, we assume for simplicity that A is diagonalizable. We will only need
this special case. If A = UΛU−1 then by Proposition 2.2.1 we know that

wk = c1(1)kuA + c2λ
k
2u2 + · · ·+ cnλ

k
nun.

Since we know that |λi| < 1 for all i = 2, 3, . . . , n, we get that limk→∞ λki = 0 for all non-dominant
eigenvalues. From this we can conclude that

lim
k→∞

wk = lim
k→∞

c1(1)kuA + c2λ
k
2u2 + · · ·+ cnλ

k
nun︸ ︷︷ ︸

→0 as k→∞

= c1uA.

22

How do we see that c1 > 0? From Lemma 3.2.3 we know that Ak is positive Markov. Therefore,
(Ak)>1 = 1. Since w0 ≥ 0 and w0 6= 0,

(Akw0)>1 = w>0 (Ak)>1 = w>0 1 > 0.

Therefore, (limk→∞Akw0)>1 = (c1uA)>1 > 0 which implies that c1 > 0 since we know that u>A1 > 0.

Warning: If A is only non-negative Markov and not positive Markov, Perron’s theorem fails. A coun-

terexample is A =

[
0 1
1 0

]
with eigenvalues λ1 = 1 and λ2 = −1. Note that the absolute value of the second

largest eigenvalue is NOT strictly smaller than the dominant eigenvalue. Even so, not all hope is lost.

Proposition 3.2.7. If A ≥ 0 but Ak is positive Markov for some k > 1, then 1 is still the unique dominant
eigenvalue of A and |µ| < 1 for all other eigenvalues µ of A.

Proof. If µ is an eigenvalue of A, then µk is an eigenvalue of Ak. Since Ak is a positive Markov matrix,
by Theorem 3.2.5, 1 is its dominant eigenvalue. This means that 1 = λk for some eigenvalue λ of A, and
|µk| < 1 for all other eigenvalues µ. Thus λA = 1 (why do we know λA 6= −1 or some other root of 1?), and
|µ| < 1 for all other eigenvalues µ.

Here is a situation where this Proposition becomes helpful.

Example 3.2.8. Suppose we have three groups with populations p1, p2, p3 respectively and after each week,
each group splits in half and joins the others. This behavior can be modeled by a non-negative Markov

matrix. If w0 =

p1

p2

p3

, then after one month we have

w1 = Aw0 =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


︸ ︷︷ ︸
non-negative Markov

p1

p2

p3



w2 = A2w0 =

1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2


︸ ︷︷ ︸

positive Markov

p1

p2

p3

 .
Since A2 is positive Markov the previous proposition tells us that 1 is the dominant eigenvalue of A and
|µ| < 1 for any other eigenvalue µ of A. Computing eigenvalues and eigenvectors we see that λA = 1 with
uA = (1/3, 1/3, 1/3)> and λ2 = λ3 = −1/2.

Let’s compute with Julia.

julia> using LinearAlgebra

julia> A = [1/2 1/4 1/4; 1/4 1/2 1/4; 1/4 1/4 1/2]

317Array{Float64,2}:

0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

23

julia> eigvals(A)

3-element Array{Float64,1}:

0.24999999999999975

0.25

0.9999999999999998

julia> eigvecs(A)

317Array{Float64,2}:

-0.0698557 0.813503 -0.57735

-0.669586 -0.467248 -0.57735

0.739442 -0.346255 -0.57735

Since Julia runs a numerical algorithm it does not often output integer answers, even if the true answer
is an integer. The output 0.9999999999999998 should be interpreted as 1. The eigenvector of 1 that Julia
gives us is the last column of the eigenvector output. Note that we can scale the eigenvector and have an
eigenvector of 1. So if we flip the sign we get the positive eigenvector (0.57735, 0.57735, 0.57735)>. We can
scale it further to get (1/3, 1/3, 1/3)>.

By Perron’s theorem, wk will approach a positive multiple of uA in the long run. Since all coordinates of
uA are equal, we should expect that in the long run the three populations will equalize. Stop for a moment
and think about whether this is what you would have expected from just the statement of the problem before
you did any computation at all.

To see a computational example, suppose w0 = (8, 16, 32)>. Then you can compute that

w0 =

 8
16
32

 ,w1 =

24
20
12

 ,w2 =

16
18
22

 ,w3 =

20
19
17

 · · · −→ 56

1/3
1/3
1/3

 .
The number 56 is the sum of the populations at the start which remains constant as you advance k.

3.3 Non-negative Markov Matrices

We already saw that Perron’s theorem fails for non-negative matrices. However, the eigenvalues and eigen-
vectors of non-negative and non-negative Markov matrices still have some special properties as we see in the
following theorem.

Theorem 3.3.1. (Frobenius Theorem) If A ≥ 0 then A has a dominant eigenvalue λA such that

1. λA ≥ 0 with eigenvector uA ≥ 0.

2. If µ is another eigenvalue of A then |µ| ≤ λA.

Example 3.3.2. The matrix A =

[
0 1
0 0

]
has a single eigenvalue 0 with multiplicity 2. Therefore, λA = 0

and AM(λA) = 2. Also, E0 = {x ∈ R2 : x2 = 0} which is the x1 axis of R2. There are certainly
nonnegative vectors in E0 such as (1, 0). This example shows you that if A is only non-negative, then the
dominant eigenvalue is also only non-negative and it can be repeated. Further, we can only guarantee that
the dominant eigenvector is non-negative, not positive.

As with Perron’s theorem, we can say something more if A is non-negative and Markov. Besides the
properties already guaranteed by Theorem 3.3.1, we get the following.

Theorem 3.3.3. If A is non-negative and Markov, then λA = 1.

24

Example 3.3.4. Consider the n×n identity matrix In which has only one eigenvalue λ = 1 with multiplicity
n. The eigenspace E1 = Rn so 1 has a non-negative eigenvector. In fact, it has a positive eigenvector.

We write the proof of part of this theorem in case you are interested to see it. This is optional and uses
(slightly) advanced facts, but is within your reach. We need a theorem that we will not prove.

Theorem 3.3.5. (Gershgorin’s Theorem) For any A ∈ Rn×n and any eigenvalue λ of A, there is some
i such that |aii − λ| ≤

∑
j 6=i |aij |.

What this theorem says is that every eigenvalue of A is close to at least one of the diagonal entries aii
of A. More precisely, if you plot all the diagonal entries of A on the number line R and for each aii mark
the interval centered at aii and distance

∑
j 6=i |aij | on either side of aii, then λ will lie in at least one these

intervals. Note that
∑
j 6=i |aij | is the sum of the absolute values of all the entries in row i except aii.

We can now argue why Theorem 3.3.3 is true. Suppose we denote the (i, j) entry of A> by a′ij . Since A

is non-negative Markov, the rows of A> sum to 1 and that all entries of A> are non-negative. Therefore,∑
j 6=i

|a′ij | =
∑
j 6=i

a′ij = 1− a′ii = 1− aii.

Suppose µ is an eigenvalue of A> then

|µ| − a′ii = |µ| − |a′ii| ≤ |µ− a′ii| ≤
∑
j 6=i

|a′ij | = 1− aii

We have used lots of different facts in the above chain: the first equality is because a′ii ≥ 0 and hence
a′ii = |a′ii|. The inequality that comes next follows from the triangle inequality for distances in R. The next
inequality is from Geshgorin’s theorem and the last equality is what we showed two lines before. Altogether
we have shown that

|µ| − a′ii ≤ 1− aii
but since a′ii = aii we conclude that |µ| ≤ 1.

Now we use the fact that all eigenvalues of A and A> are the same, so µ is also an eigenvalue of A. Also
recall that if A is Markov, then 1 is an eigenvalue of A since 1 is an eigenvalue of A> because A>1 = 1. So
we conclude that λA = 1 and |µ| ≤ 1 for all other eigenvalues µ of A.

3.4 Adjacency Matrices of Graphs

We now give a family of non-negative matrices that will come up over and over again in this class.
A graph G is a collection of nodes or vertices, labeled 1, 2, . . . , n and edges which connect pairs of

nodes. We let {i, j} denote the edge connecting nodes i and j.

Here is an example of a graph.

1 2 3

This graph has three nodes: 1, 2, 3 and two edges {1, 2}, {2, 3}.
Graphs are denoted as G = (V,E) where V is the set of nodes in G and E is the set of edges in G. Our

example graph above would be written as G = ({1, 2, 3}︸ ︷︷ ︸
V

, {{1, 2}, {2, 3}}︸ ︷︷ ︸
E

).

To any graph G we can associate a matrix AG, known as the adjacency matrix of G.

25

Definition 3.4.1. The adjacency matrix AG of a graph G = (V,E) with n nodes is a n×n matrix defined
as follows. The rows and columns of A are indexed by the node labels 1, . . . , n and the (i, j)-entry of A is 1
if the pair {i, j} is an edge in G and 0 otherwise. That is AG = (aij) where

aij =

{
1 if there exists an edge from i to j, i.e., {i, j} ∈ E
0 otherwise

The adjacency matrix for the graph G from above would be

AG =

0 1 0
1 0 1
0 1 0


Notice that this matrix is non-negative (but not Markov). Computing its eigenvalues and eigenvectors:

λ1 =
√

2 u1 =

√2
2√
2

 , λ2 = 0 u2 =

 1
0
−1

 , λ3 = −
√

2 u3 =

√2
−2√

2


Note several things:

• The dominant eigenvalue λAG =
√

2 is positive but not 1.

• AG has a smaller eigenvalue µ = −
√

2 such that |µ| = λAG .

• The dominant eigenvalue has a non-negative (in fact, positive) eigenvector.

Over the coming weeks we will be looking at lots of graphs and their adjacency matrices. We finish this
section with a powerful application of what we have learned in this chapter.

3.5 Google Page Rank

The Google page rank algorithm is due to Larry Page and Sergey Brin in 1998, the founders of Google, and
is used to rank webpages. The central idea is to decide the “rank” or “importance” of a webpage by the
importance of pages that link to it. When we submit a query, we want to see the most relevant pages at the
top of the list, so a useful measurement of importance is needed. We will see how positive Markov matrices
and difference equations give us an algorithm. This material is taken from Chapter 12 of the book Math
Bytes by Tim Chartier.

We can think of the world wide web as a directed graph, with nodes indicating webpages and edges
indicating links from one page to another. Suppose our world wide web consists of 6 webpages and links as
follows.

4 5

2 3

1

6

26

From this graph we construct a page rank matrix, which will be a 6 × 6 matrix of probabilities, that
models movement between pages. We compute it according to the following rules:
When you are at page i, you have two choices

1. Teleportation: jump to a different page by typing the url of the webpage directly into the browser.

2. Follow a link.

If you decide to teleport, assume that all pages are equally like for you to teleport to. If you decide to follow
a link, assume that all links are equally likely. You may want to assign different probabilities to these moves
but let’s keep it simple. Let’s also decide in this example when we will teleport and when we will follow a
link. Say we roll a dice and do the following:

• If we roll 1, 2, 3, 4, or 5, then we follow a link.

• If we roll a 6, then we teleport.

The (i, j) entry of the page rank matrix A is the probability of going from page j to page i. Let’s
compute the first column of this matrix in our example. The entries are ai1 for i = 1, 2, 3, 4, 5, 6. Remember,
to compute ai1 we only focus on going from page 1 to page i.

• a11: We can only teleport from 1 to 1. We have a 1/6 chance of rolling a 6 and a 1/6 chance of
teleporting to 1 out of the 6 possible webpages. The total probability a11 = (1/6)(1/6) = 1/36.

• a21: Similarly to the previous case, we have a 1/6 chance of teleporting from 1 to 2 and since all
webpages are equally likely, the probability that we teleport from 1 to 2 is (1/6)(1/6) = 1/36. We can
also follow a link with probability 5/6 (i.e. rolling anything but a 6), there is no link from 1 to 2 in
our graph. So in total, we move from 1 to 2 with probability a21 = (1/6)(1/6) + (5/6)(0) = 1/36.

• a31: This is the same as the above, i.e., a31 = 1/36.

• a41: This is the only computation that is different because there is a link from 1 to 4. As before, we
teleport with probability 1/6 (chance of rolling a 6), so the teleportation probability from 1 to 4 is
1/36. We will follow a link with probability 5/6 (chance of rolling anything other than a 6), and a
1/1 chance of linking from 1 to 4 since 4 is the only link we can follow from 1. Note that if 1 had
k outgoing edges, then the chance of linking to any of those pages would then be 1/k. Therefore the
total probability of going from 1 to 4 is a41 = (1/6)(1/6) + (5/6)(1) = 31/36.

• a51: This is the same as a21.

• a61: This is the same as a21.

Summarizing, the first column of our page rank matrix is


1/36
1/36
1/36
31/36
1/36
1/36

. Computing all entries by the same

procedure as above, we get the page rank matrix:

A =


1/36 31/36 31/36 1/36 1/36 6/36
1/36 1/36 1/36 11/36 1/36 6/36
1/36 1/36 1/36 11/36 16/36 6/36
31/36 1/36 1/36 1/36 1/36 6/36
1/36 1/36 1/36 11/36 1/36 6/36
1/36 1/36 1/36 1/36 16/36 6/36

 .

27

The computation of the last column is a bit special since page 6 has no links at all. Therefore, from page
6 you can only teleport and so with probability 1 you will teleport from page 6 and each page has an equal
probability of being teleported to. Therefore, ai6 = 1 · 1

6 = 1
6 for all i. You should compute several entries

by hand to make sure you understand the procedure. We make several key observations about this matrix
and see how the theorems we saw in this chapter help.

Important Observations

• Teleportation guarantees that our matrix A will be positive since every entry will be at least 1/36.

• Since the entries in column j are the probabilities of going from page j to the others, the entries must
add up to 1, so A will be Markov. Check that all columns of A add up to 1. This also provides
shortcuts to the computation.

Since the page rank matrix A is positive Markov, Perron’s theorem applies. Using Julia we can compute
its eigenvalues and eigenvectors.

julia> using LinearAlgebra

julia> A = [1/36 31/36 31/36 1/36 1/36 6/36;

1/36 1/36 1/36 11/36 1/36 6/36;

1/36 1/36 1/36 11/36 16/36 6/36;

31/36 1/36 1/36 1/36 1/36 6/36;

1/36 1/36 1/36 11/36 1/36 6/36;

1/36 1/36 1/36 1/36 16/36 6/36]

617Array{Float64,2}:

0.0277778 0.861111 0.861111 0.0277778 0.0277778 0.166667

0.0277778 0.0277778 0.0277778 0.305556 0.0277778 0.166667

0.0277778 0.0277778 0.0277778 0.305556 0.444444 0.166667

0.861111 0.0277778 0.0277778 0.0277778 0.0277778 0.166667

0.0277778 0.0277778 0.0277778 0.305556 0.0277778 0.166667

0.0277778 0.0277778 0.0277778 0.0277778 0.444444 0.166667

julia> eigvals(A)

6-element Array{Complex{Float64},1}:

-0.2977044274773357 - 0.6329450281890806im

-0.2977044274773357 + 0.6329450281890806im

-0.22223919020536226 + 0.0im

-5.782547471497545e-18 + 0.0im

0.12320360071558936 + 0.0im

1.0000000000000013 + 0.0im

julia> eigvecs(A)

617Array{Complex{Float64},2}:

0.233465+0.505988im 0.233465-0.505988im 0.122729+0.0im ? 0.20872+0.0im -0.599066+0.0im

0.0893727-0.243577im 0.0893727+0.243577im 0.48738+0.0im 0.0323265+0.0im -0.253028+0.0im

0.198012-0.133645im 0.198012+0.133645im -0.426388+0.0im 0.141653+0.0im -0.358456+0.0im

-0.691375-0.0im -0.691375+0.0im -0.108766+0.0im 0.443701+0.0im -0.588717+0.0im

0.0893727-0.243577im 0.0893727+0.243577im 0.48738+0.0im 0.0323265+0.0im -0.253028+0.0im

0.0811519+0.114811im 0.0811519-0.114811im -0.562336+0.0im ? -0.858726+0.0im -0.194924+0.0im

The dominant eigenvalue of A is listed at the end in the list of eigenvalues and its eigenvector is listed

28

last in the list of eigenvectors. Observe that the dominant eigenvalue is 1 with eigenvector
−0.599066
−0.253028
−0.358456
−0.588717
−0.253028
−0.194924

 .

This is not positive, but since all scalings of an eigenvector is again an eigenvector we can scale by −1 and
take the dominant eigenvector to be 

0.599066
0.253028
0.358456
0.588717
0.253028
0.194924


which is positive. Let’s now scale once more by dividing by the sum of the coordinates to get a vector of
probabilities, and set

uA =


0.26658
0.11259
0.15951
0.26197
0.11259
0.08674

 .

Definition 3.5.1. We call uA the page rank vector of our system of webpages. It is the dominant
eigenvector of the page rank matrix and is always scaled to be a vector of probabilities that add up to 1.

Now here is how the page rank algorithm works. We assume all pages are equally important at the
beginning, so our initial state vector, whose entries rank the importance of each webpage at time 0, is
w0 = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)>. Let’s think about what Aw0 means. It’s first entry is the dot product
of the first row of A with w0. The first row of A records the probabilities with which all the different
pages transfer to page 1. Therefore, the first entry of Aw0 is the importance page 1 has after one iteration of
teleporting and linking from all vertices. Applying the same logic to all entries of Aw0 we see that w1 = Aw0

is the vector of rankings of pages after one iteration. Continuing we see that wk = Akw0 is the vector of
rankings after k iterations. Therefore, by Theorem 3.2.5, we have limk→∞wk = c1(1k)uA. That is, the
importance of webpages, in the long run, is a positive multiple of the dominant eigenvector uA of A, and in
particular, proportional to uA. Looking at uA in our example, we see that the most important webpage in
our system is webpage 1, the second most important is webpage 4 and so on.

29

Chapter 4

Orthogonality and Projections

In this chapter we will see the notion of orthogonality of vectors and subspaces. This material is based on
Chapter 4 in Strang’s book. Geometrically, orthogonality is the same as perpendicularity, at least in Rn.
This important concept will play a fundamental role in much of the theory and applications we will see in
the rest of this class.

4.1 Orthogonal Vectors and Subspaces

Let v =

v1

...
vn

 ,w =

w1

...
wn

 ∈ Rn. Recall that the dot product of v and w is

v>w = v1w1 + · · ·+ vnwn =

n∑
i=1

viwi.

The norm of v is

||v|| =
√

v>v =
√
v2

1 + · · ·+ v2
n =

√√√√ n∑
i=1

v2
i

and the squared norm of v is
||v||2 = v>v.

Check that if v ∈ Rn, then its norm ‖v‖ is the length of the vector v. You may also remember that if the
angle between v and w is θ, then

v>w = w>v = ‖v‖‖w‖ cos θ.

Therefore, if v and w are perpendicular, then θ = π/2 and v>w = 0 since cosπ/2 = 0.

Definition 4.1.1. For any v,w ∈ Rn we say that v and w are orthogonal if v>w = 0 or equivalently, if
w>v = 0. We write v ⊥ w.

If v ⊥ w, then draw a picture and check that the Pythagorus theorem implies the following.

Theorem 4.1.2. If v,w ∈ Rn and v>w = 0, then

||v||2 + ||w||2 = ||v−w||2 = ||v + w||2

We can extend the notion of orthogonality of vectors in Rn, to subspaces of Rn.

30

Definition 4.1.3. Let V and W be subspaces of Rn. We say that V and W are orthogonal, denoted
V ⊥W , if every v ∈ V is orthogonal to every w ∈W .

To prove that two subspaces V and W are orthogonal, you need to pick an arbitrary vector v ∈ V and
an arbitrary vector w ∈ W and argue that v>w = 0. Here arbitrary means that you assume for v only
properties that all vectors in v would have, nothing special. Same for w. Then since you assumed nothing
special for v and w if v>w = 0 then you can conclude that this is true for any v ∈ V and w ∈ W . We will
see this technique in the examples below.

We cannot visualize subspaces in high dimension, but drawing some examples in R2 and R3 will be helpful
to understand what is happening, and gives you something to hold on to.

Examples you can see

Example 4.1.4. Let V = Span

{[
1
0

]}
and W = Span

{[
0
1

]}
. We see that these are orthogonal subspaces

because any (arbitrary) vector in V looks like

[
c
0

]
for some c ∈ R and any (arbitrary) vector in W looks like[

0
d

]
for some d ∈ R, and their dot product is c · 0 + 0 · d = 0. Since we made the argument using arbitrary

vectors in V and W , the result holds for any two vectors in V and W , and we can conclude that V and W
are orthogonal. This is also clear from the picture – check that any v ∈ V is perpendicular to any w ∈W .

In the previous example we had orthogonal subspaces of equal dimension but this is not always the case.

Example 4.1.5. Consider the subspaces V = Span


1

0
0

 ,
0

1
0

 and W = Span


0

0
1

 in R3.

31

Again V ⊥ W because any vector in V looks like v =

ab
0

 for some a, b ∈ R and any vector in W looks

like w =

0
0
c

 for some c ∈ R and v>w = 0.

An example you can’t see

Example 4.1.6. Let V = Span




1
0
0
0

 ,


0
0
1
0


 and W = Span




0
1
0
0

 ,


0
0
0
1


. Use similar arguments to the

previous examples to check that V ⊥W .

We will now see that some subspaces that we know well are in fact orthogonal. A matrix A ∈ Rm×n has
three natural subspaces associated to it:

• Column space of A: Col(A) = {Ax : x ∈ Rn} ⊆ Rm, the span of the columns of A.

• Row space of A: Row(A) = {y>A : y ∈ Rm} ⊆ Rn, the span of the rows of A.

• Null space of A: Null(A) = {x ∈ Rn : Ax = 0} ⊆ Rn.

Here is some convention to remember. All vectors are assumed to be column vectors. So if we write
u ∈ Rn we mean a column vector. If we write u> then we mean a row vector. To save space in these notes
we write (1, 1, 1)> to mean the column vector whose entries are all ones. This makes sense because (1, 1, 1)
is a row vector and (1, 1, 1)> is its transpose which is a column vector. Technically column vectors and row
vectors live in dual vector spaces but we won’t really go there in this class because the dual vector space of
Rn is isomorphic to Rn again and we allow row vectors and column vectors to live together in Rn. Therefore,
in the above, Row(A) is considered to be a subspace of Rn although it is filled with row vectors. Whereas
Null(A) and Col(A) are filled with column vectors. Note that Null(A) and Col(A) live in different spaces.

Proposition 4.1.7. For any matrix A ∈ Rm×n, Row(A) ⊥ Null(A).

Proof. We begin by writing A in terms of its rows.

A =

b>1
...

b>m


Pick an x ∈ Null(A) and a row b>i of A. We first show that b>i x = 0 for all i. (Note that since b>i is

already a row vector the dot product is just b>i x.) Recall that the entries of Ax are dot products of the
rows of A with x, so we have that 0

...
0

 = Ax =

b>1 x
...

b>mx

 .
Since two vectors are equal if and only if their entries are equal, we get that b>i x = 0 for all i.

Now recall that Row(A) = Span{b>1 , · · · ,b
>
m} ⊆ Rn. Therefore, any vector in Row(A) is of the form

c1b
>
1 + · · ·+ cmb>m for some c1, . . . , cm ∈ R, and we have that

(c1b
>
1 + · · ·+ cmb>m)x = c1b

>
1 x + · · ·+ cmb>mx = 0.

Since we have shown that the dot product of an arbitrary vector in Row(A) and an arbitrary vector in
Null(A) is 0, we can conclude that Row(A) is orthogonal to Null(A).

32

We could have made this argument short by using matrix notation. Since Row(A) = {y>A : y ∈ Rm}
and Null(A) = {x ∈ Rn : Ax = 0}, if we took and element y>A ∈ Row(A) and an element x ∈ Null(A)
then (y>A)x = y>(Ax) = y>0 = 0. Hence, Row(A) ⊥ Null(A).

As we saw in the proof of Proposition 4.1.7, to show the orthogonality of V and W it is enough to show
that any basis vector of V is orthogonal to any basis vector of W . Here is the reason, more formally.

Proposition 4.1.8. Let V and W be subspaces in Rn with bases BV = {v1, · · · , vk} and BW = {w1, . . . , wl}.
Then V ⊥W if and only if v>i wj = 0 for all i = 1, . . . , k and j = 1, . . . , l.

Proof. If V ⊥ W , then any vector v ∈ V is orthogonal to any vector w ∈ W . In particular, v>i wj = 0 for
all i = 1, . . . , k and j = 1, . . . , l.

We now argue the converse. By the definition of bases, we know that any v ∈ V and w ∈W look like

v = α1v1 + · · ·+ αnvk, w = β1w1 + · · ·+ βlwl

for scalars α1, . . . , αk, β1, . . . , βl ∈ R. If v>i wj = 0 for all i and j, then

v>w = (α1v1 + · · ·+ αnvk)>(β1w1 + · · ·+ βlwl) = α1β1v
>
1 w1 + α1β2v

>
1 w2 + · · ·+ αkβlv

>
k wl = 0

This means that any vector in V is orthogonal to any vector in W and V ⊥W .

Example 4.1.9. Let A =

[
1 2 3
−1 0 2

]
. We have Row(A) = Span {(1, 2, 3), (−1, 0, 2)}. Before computing

the null space of A, we know by rank-nullity that it must be one-dimensional. Carrying out the usual

computation we get that Null(A) = Span


 2
−5/2

1

. Computing the dot products we have that

[
1 2 3

]  2
−5/2

1

 =
[
−1 0 2

]  2
−5/2

1

 = 0.

Since it’s enough to check orthogonality on bases, we conclude that Row(A) ⊥ Null(A).

Now you may be wondering if there is a nice analog of this Proposition 4.1.7 for Col(A), and sure enough
there is! The key to seeing this fact is to notice that Col(A) = Row(A>) for any matrix A. The following is
then an immediate corollary of Proposition 4.1.7.

Proposition 4.1.10. Col(A) ⊥ Null(A>) for any matrix A ∈ Rm×n.

In Strang’s book he calls the four subspaces Row(A),Col(A),Null(A),Null(A>) associated to a matrix
A, the four fundamental subspaces of A. The space Null(A>) is often called the left nullspace of A since

Null(A>) = {y> : y>A = 0}.

We think of Null(A>) ⊆ Rm as filled with row vectors similar to Row(A). We have seen that these subspaces
are paired up by orthogonality:

Row(A) ⊥ Null(A), Null(A>) ⊥ Col(A).

Before we end this section, let’s note a very useful fact about matrix-matrix multiplication.

33

Rows and Columns of a Product of Matrices

Let A ∈ Rm×k with rows a>1 , . . . ,a
>
m and B ∈ Rk×n with columns b1,b2, . . . ,bn where ai ∈ Rk and

bj ∈ Rk.

• The columns of AB are Ab1, . . . , Abn:

AB = A
[
b1 b2 · · · bn

]
=
[
Ab1 Ab2 · · · Abn

]
Therefore, each column of AB is a linear combination of the columns of A.

• The rows of AB are a>1 B,a
>
2 B, . . . ,a

>
mB:

AB =


a>1
a>2
...

a>m

B =


a>1 B
a>2 B

...
a>mB

 .
Therefore, each row of AB is a linear combination of the rows of B.

4.2 Orthogonal complements

In Example 4.1.4 we saw two orthogonal subspaces of the same dimension, while in Example 4.1.5 we had
orthogonal subspaces of different dimensions. However, in both cases, the sum of their dimensions was equal
to the dimension of the ambient space, R2 and R3 respectively. If this happens we will call the subspaces
complementary. These examples were a nice coincidence but we could have also used the following example.

Example 4.2.1. Let V = Span


1

0
0

 and W = Span


0

0
1

. Check that V ⊥ W , and dim(V) +

dim(W) = 2 < 3.

In fact, any pair of axes in Rn are orthogonal subspaces. These provide examples of orthogonal subspaces
that are not complementary. We will see that complementary orthogonal subspaces allow us to decompose
our entire space Rn in a unique way.

Definition 4.2.2. Let V be a subspace of Rn. The orthogonal complement of V , denoted V ⊥ is the
subspace of all vectors orthogonal to V . That is

V ⊥ = {y ∈ Rn : x>y = 0 ∀x ∈ V }

You should pause and check that the set of all vectors orthogonal to a subspace V ⊆ Rn is again a
subspace of Rn. We will now derive a series of facts about orthogonal complements.

Proposition 4.2.3. Let V ⊆ Rn be a subspace. Then V ∩ V ⊥ = {0}.

Proof. If x ∈ V ∩ V ⊥ and x 6= 0 then x>x = 0 which implies that ||x|| = 0 and hence x = 0.

The four fundamental subspaces of a matrix provide examples of orthogonal complements.

Theorem 4.2.4. For any matrix A ∈ Rm×n, Row(A)⊥ = Null(A) and Col(A)⊥ = Null(A>).

34

Proof. We’ll show the first statement. The second one is similar. We saw that Row(A) ⊥ Null(A) which
means that all vectors in Null(A) are orthogonal to the vectors in Row(A). Therefore Null(A) ⊆ Row(A)⊥

since Row(A)⊥ consists of all vectors that are orthogonal to the vectors in Row(A). We need to argue that
there are no more vectors in Row(A)⊥ beyond the ones in Null(A). Let’s argue by contradiction. Suppose
there was a vector z 6∈ Null(A) (which means that Az 6= 0) but z ∈ Row(A)⊥. Then b>i z = 0 for all rows
b>i of A which means that

Az =

b>1 z
...

b>mz

 = 0

which contradicts that Az 6= 0.

Check that in Example 4.1.9, Row(A) and Null(A) are complementary orthogonal subspaces. We will now
argue that ALL pairs of complementary subspaces (V, V ⊥) are of the form V = Row(A) and V ⊥ = Null(A)
for some matrix A.

Theorem 4.2.5. Any subspace V ⊆ Rn is the row space of a matrix A ∈ Rm×n and hence V ⊥ = Null(A).
In particular, any pair of subspaces (V, V ⊥) is of the form (Row(A),Null(A)) for some matrix A.

Proof. Suppose V = Span{b>1 , . . . ,b
>
k }. Then setting A =

b>1
...

b>k

 we get that V = Row(A). From Theo-

rem 4.2.4 we get that Null(A) = Row(A)⊥ = V ⊥.

We’ll now see various reasons that justify the word complementary for a subspace V ⊆ Rn and its
orthogonal complement V ⊥.

Proposition 4.2.6. If V ⊆ Rn is a subspace, then dim(V) + dim(V ⊥) = n.

Proof. We just argued that for any subspace V ⊆ Rn, there is a matrix A ∈ Rm×n such that V = Row(A)
and V ⊥ = Null(A). Therefore, by the rank-nullity theorem,

dim(V) = dim(Row(A)) = rank(A) = n− nullity(A) = n− dim(V ⊥),

and so dim(V) + dim(V ⊥) = n.

We can in fact build a basis of Rn by taking the union of a basis of V and one of V ⊥.

35

Proposition 4.2.7. If BV = {a1, . . . ,ar} is a basis for a subspace V ⊆ Rn and BV ⊥ = {a′1, . . . ,a′n−r} is a
basis for V ⊥ then

B = BV ∪ BV ⊥ = {a1, . . . ,ar,a
′
1, . . . ,a

′
n−r}

is a basis for Rn.

Proof. By construction B has n elements and Span(B) ⊆ Rn, so to argue that B is a basis of Rn we only need
to show that the n elements are linearly independent. Each set separately is linearly independent because we
assumed that BV and BV ⊥ were bases. We will now show that none of the a′j are in V = Span{a1, . . . ,ar}
by assuming that they are and arriving at a contradiction.

Suppose a′j ∈ Span{a1, . . . ,ar} for some j. Then there exist scalars c1, . . . , cr ∈ R such that

a′j = c1a1 + · · ·+ crar.

Note that a′j
>

ai = 0 for all i = 1, . . . , r since ai ∈ V and a′j ∈ V ⊥. It follows that

||a′j ||2 = a′j
>

a′j = c1 a′j
>

a1︸ ︷︷ ︸
=0

+c2 a′j
>

a2︸ ︷︷ ︸
=0

+ · · ·+ cr a′j
>

ar︸ ︷︷ ︸
=0

= 0

and thus a′j = 0. However this cannot be since a′j was in the basis BV ⊥ and hence it cannot be 0.
By a similar argument we can show that no ai ∈ Span{a′1, . . . ,a′n−r}. Therefore, B consists of linearly

independent vectors and we are done.

Now we can derive the important fact that any vector in Rn is the sum of a vector in V and a vector in
V ⊥. This decomposition is in fact unique (please think about why this is the case).

Proposition 4.2.8. Every b ∈ Rn can be written uniquely as

b = c1a1 + · · ·+ crar︸ ︷︷ ︸
bV

+ c′1a
′
1 + · · ·+ c′n−ra

′
n−r︸ ︷︷ ︸

b
V⊥

for some scalars c1, . . . , cr, c
′
1, . . . , c

′
n−r ∈ R. That is, every vector b ∈ Rn has the form b = bV + bV ⊥ where

bV ∈ V and bV ⊥ ∈ V ⊥.

Proof. The decomposition follows immediately from the previous proposition. Why is it unique? In other
words, what happens if b = bV +bV ⊥ and b = b′V +b′V ⊥ where bV ,b

′
V ∈ V , bV ⊥ ,b

′
V ⊥ ∈ V ⊥ and bV 6= b′V

(which implies that bV ⊥ 6= b′V ⊥)?

Warning: We may be inclined to think that Proposition 4.2.7 implies that any b ∈ Rn lives in either V

or V ⊥ but this is not the case. There is a fundamental difference between saying that b = bV + bV ⊥ and
saying that b in V or V ⊥. Here is a picture to drive this home.

Example 4.2.9. Let b =

1
1
1

, V = Span


1

0
0

 ,
0

1
0

 and V ⊥ = Span


0

0
1

. We can write

b =

1
0
0

+

0
1
0


︸ ︷︷ ︸

bV

+

0
0
1


︸︷︷︸
b
V⊥

but b /∈ V and b /∈ V ⊥.

36

z-axis
eV eV

"

l

✓
. (11=41+19)

o

;÷.
V -- Span { (I)

,
(IB

x-

y plane

4.3 Projections

In many mathematical applications one needs to project a vector b into a subspace V . This might be because
b is a vector of observations and if it were a true data point in your model it would have been in V , but
because of noise b ends up outside V , and now we want to find the closest element to b in V which we
consider to be the “best solution” based on the observation b. In this case the “best solution” is often the
projection of b into V , denoted as projV b. How does one project into V and how do we compute projV b?

If V ⊆ Rn is a subspace and b ∈ Rn is a vector, then either b ∈ V or b 6∈ V . If b in V then we say that
b is already the projection of b into V . If b 6∈ V then we do the following. Drop a perpendicular from the
tip of the vector b into V . The vector in V whose head is at the end of the perpendicular is projV b. Let’s
make the perpendicular into a vector too, by directing it from projV b to b and call this vector e. See the
figure below for b, e and projV b.

Ye
TE V

Mathematically, we have the following relationships:

• b = projV b + e,

• projV b ∈ V , and e ∈ V ⊥ since e was perpendicular to all of V .

By Proposition 4.2.8 there is only one way to decompose b as the sum of a vector in V and a vector in
V ⊥, so it must be that projV b = bV and e = bV ⊥ . We record this as follows.

Theorem 4.3.1. If V ⊆ Rn is a subspace and b ∈ Rn is a vector, then the projection of b onto V , which
we denote as projV b is the vector bV . Similarly, the projection of b onto V ⊥ is bV ⊥ .

37

Check for yourself that if b ∈ V , then e = 0 and b = bV = projV b. Proposition 4.2.7 provides an
algorithm to find projV b:

1. Compute a basis BV = {a1, . . . ,ar} of V .

2. Compute a basis BV ⊥ = {a′1, . . . ,a′n−r} of V ⊥.

3. Write b = bV + bV ⊥ by solving the system of linear equations

b = c1a1 + · · ·+ crar + c′1a
′
1 + · · ·+ c′n−ra

′
n−r

4. The projection of b into V is the vector projV b = bV .

This method works, but finding the bases BV and BV ⊥ is time consuming. Moreover, this method does
not give us an explicit matrix for the linear transformation that projects any vector into V . So we devise
something better.

Suppose V = Span{a1, . . . ,ak} ⊂ Rn. Then if we set A =
[
a1 · · ·ak

]
∈ Rn×k we know that Col(A) = V

and every vector in V is of the form Ax for some x ∈ Rk. In particular, there exists some x̂ such that bV = Ax̂
and e = b− bV ⊥ V .

e -- b-bu

bu V

From the fact that b− bV ⊥ V = Span{a1, . . . ,ak} every ai ⊥ b− bV and so,

a>1 (b− bV) = a>2 (b− bV) = · · · = a>k (b− bV) = 0 =⇒

a>1
...

a>k

 (b− bV) = A>(b− bV) = 0.

Now we substitute for bV = Ax̂ (x̂ is unknown), and get

A>(b−Ax̂) = 0 =⇒ A>b = A>Ax̂.

Definition 4.3.2. The equations A>b = A>Ax̂ are called normal equations.

If we could invert A>A we could solve for x̂ and then using that, find bV = Ax̂. We could also solve
the linear system A>b = A>Ax̂ to get x̂ but remember that if A>A is not invertible then this system will
give you infinitely many solutions for x̂ which does not make sense since we know the projection into V is
unique. So either way it is important to understand when A>A is invertible. As a sanity check, notice that
A>A ∈ Rk×k so it is a square matrix, and has a chance of being invertible.

Proposition 4.3.3. If a1, . . . ,ak are linearly independent, then A>A is invertible.

38

Proof. Set A =
[
a1 · · · ak

]
∈ Rn×k. Recall that A>A is invertible if and only if Null(A>A) = {0}.

Suppose y is a non-zero vector in Null(A>A), i.e., A>Ay = 0. Then multiplying both sides (on the left) by
y> and we get y>A>Ay = 0 which gives the following chain of implications:

0 = y>A>Ay = (Ay)>Ay = ‖Ay‖2 =⇒ Ay = 0.

Therefore y is a non-zero vector in Null(A) but this is a contradiction since if the columns of A are linearly
independent, then Null(A) = {0}. Therefore, we conclude that if a1, . . . ,ak are linearly independent, then
A>A is invertible.

This proposition allows us to find a linear transformation that projects into a subspace V . Let us assume
that a1, . . . ,ak is a basis for V and not just a spanning set, which guarantees they are linearly independent.
Using Proposition 4.3.3 we get that if Ax̂ = bV then

x̂ = (A>A)−1A>b and hence bV = A(A>A)−1A>b.

Therefore the linear transformation that projects b ∈ Rn to projV b ∈ V sends b 7→ A(A>A)−1A>b.

Proposition 4.3.4. Let V be a subspace of Rn with basis {a1, . . . ,ak} and let A =
[
a1 · · · ak

]
. Then

projection into V is given by the projection matrix

P = A(A>A)−1A>.

Many of you may have seen the above formula for projection before in the context of some application.
A takeaway from this chapter should be that the formula should not be applied blindly. It works only when
the columns of A are linearly independent.

Check that P 2 = P (recall the homework problem about matrices like this). We will see later that that
any (symmetric) matrix P ∈ Rn×n that satisfies P 2 = P is the matrix of projection from Rn into some
subspace, and that this subspace is not all of Rn if 0 is an eigenvalue of P (alternately, P has a nullspace).
The homework problem further showed you that all projection matrices are diagonalizable. There is
a lot more to learn about projection matrices.

We now give an important example.

Example 4.3.5. Let’s project b =

3
4
4

 onto the line spanned by

2
2
1

.

Here V = Span


2

2
1

. Going along with the procedure just described, we set A =

2
2
1

 and then

compute A>A =
[
2 2 1

] 2
2
1

 = 9. This is clearly an invertible 1× 1 matrix. The last step is to plug into

the formula for a projection matrix and multiply by b to get projV b.

bV = A(A>A)−1A>b =

2
2
1

 (
1

9
)
[
2 2 1

] 3
4
4

 =

2
2
1

 (
1

9
)(18) =

4
4
2

 .
Check that

4
4
2

 is indeed on the line spanned by

2
2
1

.

This example shows you that if V = Span{u} is a line, then the projection of b onto V is bV = u(u>b)
(u>u)

.

The above example of projecting onto a line is so important that we are going to record it as a proposition.
We will revisit this formula later in the quarter.

39

Proposition 4.3.6. Let V = Span{u} be the line spanned by the vector u ∈ Rn. Then projection onto V is
achieved by the linear transformation:

P =
uu>

u>u
that sends x 7→ uu>

u>u
x

In particular, if ‖u‖ = 1, then u>u = 1 and P = uu>.

Let’s illustrate on a very familiar example. Suppose b =

1
2
3

. Then its projections onto the x-axis,

y-axis and z-axis are respectively: 1
0
0

 = e1e
>
1 b =

1
0
0


︸︷︷︸
e1

[
1 0 0

]︸ ︷︷ ︸
e>1

1
2
3


︸︷︷︸
b

,

0
2
0

 = e2e
>
2 b =

0
1
0


︸︷︷︸
e2

[
0 1 0

]︸ ︷︷ ︸
e>2

1
2
3


︸︷︷︸
b

,

0
0
3

 = e3e
>
3 b =

0
0
1


︸︷︷︸
e3

[
0 0 1

]︸ ︷︷ ︸
e>3

1
2
3


︸︷︷︸
b

.

Before we finish this section, let’s note an important property of the vector bV = projV b.

Proposition 4.3.7. For any vector b ∈ Rn and subspace V , projV b is the closest point (in Euclidean
distance) in V to b.

Proof. If b ∈ V then projV b = b and b is indeed the closet point to itself in V . So suppose b 6∈ V and
V = Span{a1, . . . ,ak}. Then V = Col(A) and any point in V looks like Ax for some x ∈ Rk. We are looking
for x such that ‖Ax− b‖ is minimized. This is same as looking for x such that ‖Ax− b‖2 is minimized.

Now recall that b = bV + e. Substituting for b we want to find x ∈ Rk that minimizes ‖Ax−bV − e‖2.
However, since Ax− bV ∈ V and e ∈ V ⊥, by Pythagorus’ theorem,

‖Ax− b‖2 = ‖(Ax− bV)− e‖2 = ‖(Ax− bV)‖2 + ‖e‖2.

The vector e is fixed since it is the perpendicular from b to V both of which are fixed. In particular, ‖e‖2
is fixed. Therefore, to minimize ‖Ax − b‖2 we can only minimize ‖(Ax − bV)‖2. This quantity cannot be
negative and it will be zero if we set x = x̂. Therefore, we get that x̂ is the vector that minimizes ‖Ax−b‖2
and so bV = Ax̂ = projV b is the closest point in V to b.

4.4 Linear Regression

A very important problem in statistics is to find the best line that fits a collection of observed data points
in R2. We now use the theory of projections to find such a best fit line and make sense of what we mean by
“best fit”. Afterwards we will mention several applications of this method which is commonly called least
squares regression or linear regression.

40

is

(0,6) •

#

• • > t
(1,0) (2,0)

Problem: Find the line that best fits the points (0, 6), (1, 0), and (2, 0).
From the picture we can see that no line passes through all 3 points. So we are going to find the best

line we can and we’ll see what that means.
Suppose we label the horizontal axis of R2 by the variable t and vertical axis by the variable s, so that

any point in R2 has coordinates (t, s). A line L in this plane has the form s = C + Dt where C and D are
constants. If L passed through the 3 points then the following equations would have a solution (C,D):

6 = C +D · 0
0 = C +D · 1
0 = C +D · 2

In other words, the linear system 1 0
1 1
1 2


︸ ︷︷ ︸

A

[
C
D

]
=

6
0
0


︸︷︷︸
b

would have a solution. Note that the variables in this system are C and D.
Since there is no such line, we know the system has no solution, i.e. b = (6, 0, 0)> /∈ Col(A). However,

we learned that the closest point to b in Col(A) is projCol(A)b which we will call p for convenience – p for
projection. Recall that p = Ax̂. Computing x̂ (using the normal equations) we get

x̂ =

[
5
−3

]
and p =

 5
2
−1

 , or equivalently,

 5
2
−1


︸ ︷︷ ︸

p

=

1 0
1 1
1 2


︸ ︷︷ ︸

A

[
5
−3

]
︸ ︷︷ ︸

x̂

.

Definition 4.4.1. Define the best fit line L for the given data points (in blue) to be the line L (in orange)

with

[
C
D

]
= x̂ =

[
5
−3

]
, i.e., L has equation s = 5− 3t.

The points on L are of the form (t, 5−3t) for each t ∈ R. When t = 0, 1, 2 which were the first coordinates
of the (blue) points we started with, we get the points (0, 5), (1, 2), (2,−1) on L marked in orange. The vector
of second coordinates of the orange points is exactly p by construction. Now recall that b−p = e. Therefore,
for each t = 0, 1, 2, we get that the difference in vertical height (shown in red) between the given point (ti, bi)
and the point (ti, pi) is exactly ei. Since x̂ minimizes ‖Ax− b‖2 over all x and this minimum value is ‖e‖2,
we get that the line L we have constructed minimizes the sum of squares of the vertical distances between
the ith data point (ti, bi) and the point (ti, pi) on L, i.e., e2

1 + e2
2 + e2

3. Further note that since (1, 1, 1)> is a
column of A, it is in Col(A), and we know that e ⊥ Col(A). Therefore, 0 = (1, 1, 1)e = e1 + e2 + e3.

41

is

G.6) •
. 5=5-3T

(o.5)
•

•
(42)

I

• • 7

(1,0) (2,0) t
•

KID

is

G.6) Of
. 8=5-3t

-

con
.

e--fit.
•
(42) b p

- I
I.o, q.cz,o,

'
e

k.-D

General algorithm for finding the best fit line by least squares regression

Input: Data points (t1, b1), (t2, b2), . . . (tm, bm). Output: The line L that best fits the given data in the
sense of minimizing the sum of squares of vertical distances between (ti, bi) and (ti, si) ∈ L.

1. Set b =


b1
b2
...
bm


2. If there was a line s = C +Dt through all points, then b ∈ Col(A) and

1 t1
1 t2
...

...
1 tm


︸ ︷︷ ︸

A

[
C
D

]
=


b1
b2
...
bm


︸ ︷︷ ︸

b

would be feasible. Solve for C and D and find the best fit line L with equation s = C +Dt.

3. Otherwise, project b onto Col(A) to get p = Ax̂. Then set

[
C
D

]
= x̂ to get the best fit line L with

equation s = C +Dt.

42

The values ei = bi − (C + Dti) are the differences in height between the ith data point and the point
on L with the same t coordinate. The line L minimizes ||e||2 = e2

1 + · · · + e2
m. Further, e1 + · · · + em = 0

because 1 ∈ Col(A) and e ⊥ Col(A).

Linear regression has many many applications and is a standard method to make predictions based on
past behavior. For example:

• Predict ice cream sales s on a day with temperature t based on past observations of the amount of ice
cream sold on days with recorded temperatures.

• Predict house prices based on data collected for price vs square footage.

• Predict the number of goals a player would score based on past performances.

• Set the salary of a new employee based on data collected of salary vs experience.

In 2018 Washington state abolished the death penalty based on regression analysis done by two UW fac-
ulty – Katherine Beckett and Heather Evans – in the Department of Sociology. They found that black people
were four times as likely to be sentenced to death as prisoners of other races. You can read more about this
remarkable work at: https://magazine.washington.edu/feature/death-penalty-washington-state/

43

https://magazine.washington.edu/feature/death-penalty-washington-state/

Chapter 5

Symmetric Matrices

In this chapter we will define symmetric matrices which are arguably the most important matrices you will
see. We will prove the powerful Spectral Theorem for real symmetric matrices which will show that all
symmetric matrices are diagonalizable. You can read about symmetric matrices in Chapter 6.4 in Strang’s
book. In the next chapter we will go onto another very important class of matrices called positive semi-
definite matrices which form a subset of symmetric matrices. These classes of matrices appear in many
applications as we will see.

5.1 Eigenvalues and Eigenvectors of Real Symmetric Matrices

Definition 5.1.1. A matrix A ∈ Rn×n is symmetric if A = A>.

Example 5.1.2. The matrix A =

 1 −1 0
−1 2 −1
0 −1 1

 is symmetric. The matrix B =

[
1 2
1 2

]
is not.

We now prove a sequence of facts about symmetric matrices that will get us to the Spectral Theorem.
Recall that the conjugate of a complex number z = a+ bi, is z = a− bi. A complex number z is real if and
only if z = z. The complex conjugate satisfies a number of properties, such as

(a+ bi)(c+ di) = (a+ bi)(c+ di).

Define the conjugate of a matrix A, denoted A, to be the matrix obtained by conjugating all entries of A.
Note that A is a real matrix if and only if A = A. Using these facts we get the following.

Proposition 5.1.3. If A ∈ Rn×n is symmetric then all eigenvalues of A are real.

Proof. Suppose that Ax = λx where λ may be some complex number and x may have complex entries.
Taking conjugates of both sides of the eigenvalue equation and since A = A, we get

Ax = λx =⇒ Ax = λx =⇒ Ax = λx

We now transpose both sides of this equation and using A = A> we have:

(Ax)> = (λx)> =⇒ x>A> = x>λ =⇒ x>A = λx>

Multiplying Ax = λx by x> on the left we get

x>Ax = λx>x.

Multiplying x>A = λx> by x on the right we get

x>Ax = λx>x.

Therefore, λx>x = λx>x which implies that λ = λ (since x>x 6= 0) and so, λ ∈ R.

44

We can also see that if A = A> then each eigenspace of A has a basis made up of real eigenvectors.

Proposition 5.1.4. If λ is an eigenvalue of a symmetric matrix A, then Eλ has a basis of real eigenvectors.

Proof. Recall that the eigenspace Eλ is the nullspace of A − λI. Since λ ∈ R, A − λI is a real matrix and
hence its nullspace has a basis consisting of only real vectors.

Example 5.1.5. Consider the symmetric matrix A =

 1 −1 0
−1 2 −1
0 −1 1

. It’s eigenvalues are λ = 0, 1, 3 with

eigenvectors u1 =

1
1
1

 ,u2 =

 1
0
−1

, and u3 =

 1
−2
1

 respectively. Notice that the three eigenvectors are

mutually orthogonal:
u>1 u2 = u>1 u3 = u>2 u3 = 0

Proposition 5.1.6. Two real eigenvectors from different eigenspaces of a symmetric matrix are mutually
orthogonal. That is, if x1 ∈ Eλ1

and x2 ∈ Eλ2
with λ1 6= λ2, then x>1 x2 = 0.

Proof. Suppose Ax = λ1x and Ay = λ2y with λ1 6= λ2 and x,y ∈ Rn:

Ax = λ1x =⇒ (λ1x)> = (Ax)> =⇒ λ1x
> = x>A> = x>A

Multiplying both sides of this equation on the right by y we get

λ1x
>y = x>Ay = x>λ2y =⇒ λ1x

>y = λ2x
>y =⇒ (λ1 − λ2)x>y = 0

Since λ1 6= λ2 we must have x>y = 0.

Proposition 5.1.7. For each eigenvalue λ of a symmetric matrix A ∈ Rn×n, we have AM(λ) = GM(λ).

We might prove this fact later, but will assume it for now. Notice that this means that A is diagonalizable.

5.2 The Spectral Theorem for Real Symmetric Matrices

We now show that we can pick a very special eigenbasis for a symmetric matrix.

Definition 5.2.1. 1. The vectors u1,u2, . . . ,un ∈ Rn are orthogonal if u>i uj = 0 ∀ i 6= j.

2. The vectors u1,u2, . . . ,un ∈ Rn are orthonormal if u>i uj = 0 ∀ i 6= j and ||ui|| = 1 ∀ i.

3. A matrix Q ∈ Rn×n is orthogonal if its columns are orthogonal.

4. A matrix Q ∈ Rn×n is orthonormal if its columns are orthonormal.

Example 5.2.2. The set

S =


1

0
0

 ,
0

1
0

 ,
0

0
1


consists of orthonormal vectors because all vectors have length 1 are are mutually orthogonal. The identity
matrix I3 is therefore, orthonormal. In fact, all identity matrices are orthonormal. Even if you scramble the
columns of an identity matrix, you get an orthonormal matrix. In particular, all permutation matrices are
orthonormal.

45

Example 5.2.3. Consider the three eigenvectors u1,u2,u3 from Example 5.1.5. The vectors are already
pairwise orthogonal, so to get a orthonormal set of eigenvectors we just need to replace the given eigenvectors
by scaled versions that have unit norm:

u1 =

1
1
1

 −→ u′1 =
1√
3

1
1
1

 , u2 =

 1
0
−1

 −→ u′2 =
1√
2

 1
0
−1

 , u3 =

 1
−2
1

 −→ 1√
6

 1
−2
1

 .
It is a general fact that one can always find an orthonormal basis for any real vector space. This is

done using a procedure called the Gram-Schmidt algorithm. For now let’s assume that we can always find a
orthogonal/orthonormal basis of any vector space.

Proposition 5.2.4. If A ∈ Rn×n is symmetric, then A has n orthonormal eigenvectors.

Proof. By Proposition 5.1.7, we know that each eigenspace Eλ has maximum possible dimension, equal to
AM(λ). By applying the Gram-Schmidt procedure, we can obtain an orthonormal basis for each Eλ:

BEλi = {ui1 ,ui2 , . . . ,uiAM(λi)
}

From Proposition 5.1.6, we have that the basis vectors in BEλi are all orthogonal to the basis vectors in BEλj
for eigenvalues λi 6= λj . Taking the union of all these bases, we obtain n linearly independent eigenvectors
of A, each of unit length and mutually orthogonal.

We need one final fact before we can state the spectral theorem.

Proposition 5.2.5. If Q ∈ Rn×n is orthonormal, then QQ> = Q>Q = In. In particular, Q−1 = Q>.

Proof. Suppose Q =
[
u1 · · · un

]
. Then u1, . . . ,un are orthonormal. Therefore,

Q>Q =

u>1
...

u>n

 [u1 · · · un
]

=

||u1||2 u>j ui
. . .

u>i uj ||un||2

 =

1 0
. . .

0 1

 = In

In words, the (i, j) entry of Q>Q is the dot product of column i of Q (row i of Q>) and column j of Q.
If i 6= j, this dot product is 0 since all columns of Q are orthogonal. If i = j then this dot product is
u>i ui = ‖ui‖2 = 1. Hence Q>Q = In.

Since Q is invertible, multiply both sides of Q>Q = In by Q−1 to get Q> = Q−1. Therefore we also have
that QQ> = QQ−1 = In.

Theorem 5.2.6. [Spectral Theorem] If A ∈ Rn×n is symmetric, then A has a diagonalization

A = QΛQ−1 = QΛQ>

where Λ is a real diagonal matrix and Q is orthonormal.

Proof. The proof of this is a combination of the above propositions. Proposition 5.1.3 implies that all n
eigenvalues of A are real, and so Λ is a real diagonal matrix. Proposition 5.1.7 and Proposition 5.2.4 imply
that A is diagonalizable by an orthonormal matrix. Finally Proposition 5.2.5 tells us that Q−1 = Q>.

Example 5.2.7. Consider the matrix A =

 1 −1 0
−1 2 −1
0 −1 1

 again. It has the diagonalization

A = QΛQ−1 =

1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6

0 0 0
0 1 0
0 0 3

1/
√

3 1/
√

3 1/
√

3

1/
√

2 0 −1/
√

2

1/
√

6 −2/
√

6 1/
√

6


where Q is orthonormal and Λ is real. The columns of Q are orthonormal eigenvectors of A.

46

5.3 Diagonalization and change of basis

We now recall the connection between diagonalization and change of bases from Chapter 1. Since all
symmetric matrices are diagonalizable, their effect as linear transformations is the same as the effect of the
eigenvalue matrix Λ, as long as we work in the basis given by the columns of the eigenvector matrix Q. Let
A = QΛQ> be an orthonormal diagonalization of the symmetric matrix A and suppose the set of columns
of Q are Q = {u1, . . . ,un}. From the diagonalization we have

Q>A = Q>QΛQ> = ΛQ>

since Q>Q = I. Recall that the coordinates y with respect to Q of a vector x ∈ Rn is y = Q−1x = Q>x.
Similarly, the coordinates of Ax with respect to Q is equal to

Q>Ax = ΛQ>x = Λy.

Therefore, the effect of sending x 7→ Ax in standard coordinates is the same as y 7→ Λy in the basis Q.
By the Spectral Theorem, the eigenbasis Q is orthonormal. Therefore, we have passed from the standard
(orthonormal) basis e1, . . . , en to a new orthonormal basis u1, . . . ,un which is a rotation of the standard
basis. We illustrate on a simple example.

Example 5.3.1. Consider the following (symmetric) matrix, along with its orthogonal diagonalization

A =

[
1 2
2 4

]
=

[
2 1
−1 2

]
︸ ︷︷ ︸

Q

[
0 0
0 5

]
︸ ︷︷ ︸

Λ

(
1

5
)

[
2 −1
1 2

]
︸ ︷︷ ︸

Q−1

Here, our eigenbasis Q =

{[
2
−1

]
,

[
1
2

]}
is only orthogonal and not orthonormal. We have not normalized

the vectors to keep them nice because of which, Q−1 6= Q>.

If x =

[
5
5

]
, then Ax =

[
15
30

]
. After changing the coordinates of x and Ax with respect to the eigenbasis

Q, we get

[x]Q = y = Q−1x =
1

5

[
2 −1
1 2

] [
5
5

]
=

[
1
3

]
and

[Ax]Q = Q−1Ax =
1

5

[
2 −1
1 2

] [
15
20

]
=

[
0
15

]
= Λy =

[
0 0
0 5

] [
1
3

]
In the eigenbasis Q, the effect of A is stretching along the new orthogonal coordinate axes – crushing the

first coordinate of any vector to the origin and scaling the second by a factor of 5.

47

Chapter 6

Positive Semidefinite Matrices

We now study a subclass of symmetric matrices called positive semidefinite matrices. Their eigenvalues have
even more structure than that of symmetric matrices and they play a central role in a number of applications.
You can read more about positive semidefinite matrices in Chapter 6.5 of Strang’s book.

6.1 Symmetric Matrices and Quadratic Forms

We first observe that to every square matrix A ∈ Rn×n, we can associate a quadratic polynomial in n
variables by multiplying A on the left by x> and on the right by x where x = (x1, . . . , xn)>. To illustrate,
for n = 2 we can construct the following quadratic polynomial:[

x y
] [a b
c d

] [
x
y

]
=
[
ax+ cy bx+ dy

] [x
y

]
= ax2 + bxy + cxy + dy2 = ax2 + (b+ c)xy + dy2.

Now notice that we could have gotten the same quadratic polynomial from a symmetric matrix as follows:

[
x y

] [a b+c
2

b+c
2 d

] [
x
y

]
= ax2 + (b+ c)xy + dy2.

In general, a symmetric matrix A leads to the quadratic polynomial:

qA(x) := x>Ax =

n∑
i=1

aiix
2
i +

∑
i 6=j

2aijxixj

Since the degree of every monomial in this polynomial is the same, namely 2, this polynomial is said to be
homogeneous and homogeneous polynomials are called forms. Therefore, we see that any symmetric matrix
A gives rise to a quadratic form qA(x) = x>Ax. Conversely, every quadratic form in x1, . . . , xn is of the
form

∑n
i=1 biix

2
i +

∑
i 6=j bijxixj and hence comes from the unique symmetric matrix

B =



b11
b12
2

b13
2 · · · b1n

2
b12
2 b22

b23
2 · · · b2n

2
b13
2

b23
2 b33 · · · b3n

2
b14
2 · · · · · · · · · · · ·
...

...
...

...
...

b1n
2 · · · · · · · · · bnn


by the construction qB(x) = x>Bx. Therefore, we conclude that we can identify the set of all quadratic
forms in n variables with the set of symmetric matrices.

48

Example 6.1.1. The quadratic form 2x2 − 15xy + 3y2 = qA(x, y) for A =

[
2 −15/2

−15/2 3

]
.

We now look at the shape of the graphs of the quadratic forms qA(x) as we slowly dial up the eigenvalues
of A from some negative ones to all positive. Since det(A) is the product of eigenvalues, its value moves
from negative to positive in the process.

Example 6.1.2. Consider A =

[
1 −5
−5 1

]
with eigenvalues λ = −4, 6 and det(A) = −24. Then

qA(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [1 −5
−5 1

] [
x
y

]
= x2 − 10xy + y2

whose graph in Figure 6.1 is not convex and has points above and below the xy plane, the domain of qA.

Figure 6.1: qA(x, y) = x2 − 10xy + y2

Example 6.1.3. Now consider A =

[
10 −5
−5 2

]
with eigenvalues λ = −0.403, 12 and det(A) = −5. Then

qA(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [10 −5
−5 2

] [
x
y

]
= 10x2 − 10xy + 2y2.

Its graph shown in Figure 6.2 looks more or less convex, but it is not. It has some points below the domain.

Figure 6.2: qA(x, y) = 10x2 − 10xy + 2y2

49

Example 6.1.4. Next, let A =

[
100 −5
−5 20

]
whose eigenvalues are λ = 19.88, 100.31 and det(A) = 1975.

The graph of

qA(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [100 −5
−5 20

] [
x
y

]
= 100x2 − 10xy + 20y2

seen in Figure 6.3 is clearly convex. Moreover, all points on the graph have nonnegative height.

Figure 6.3: qA(x, y) = 100x2 − 10xy + 20y2

Example 6.1.5. Finally, let A =

[
500 −5
−5 500

]
with eigenvalues λ = 495, 505 and det(A) = 249975. The

graph of

q(x, y) =
[
x y

]
A

[
x
y

]
=
[
x y

] [500 −5
−5 500

] [
x
y

]
= 500x2 − 10xy + 500y2

can be seen in Figure 6.4 This graph is also clearly convex and all points on it have nonnegative height.

Figure 6.4: qA(x, y) = 500x2 − 10xy + 500y2

Definition 6.1.6. Say that a symmetric matrix A is positive semidefinite (PSD) if qA(x) = x>Ax ≥ 0
for all x ∈ Rn and positive definite (PD) if qA(x) = x>Ax > 0 for all x ∈ Rn except x = 0.

50

The matrices in Examples 6.1.4 and 6.1.5 are positive semidefinite. In fact, both are positive definite.
It turns out that there are many alternate characterizations of positive semidefinite/definite matrices, each
useful for different purposes. We now develop these alternatives.

Definition 6.1.7. A principal minor of a matrix A ∈ Rn×n is the determinant of the square submatrix of
A obtained by deleting the rows and columns of A with the same indices. This means that if we, for example,
delete rows 2, 5, 7, then we should also delete columns 2, 5, 7. Similarly, a leading principal minor or A
is the determinant of the square submatrix of A with rows and columns indexed by 1, 2, 3, . . . , k for some k.
In this case the indices of the deleted rows and columns are k + 1, . . . , n.

Example 6.1.8. The matrix A =

1 4 6
4 2 1
6 1 6

 has three leading principal minors:

det

1 4 6
4 2 1
6 1 6

 , det

[
1 4
4 2

]
, det

[
1
]
.

Any n× n matrix has n leading principal minors.
There are 7 principal minors of A corresponding to the 7 subsets of {1, 2, 3} (except {1, 2, 3} itself)

indexing the rows and columns being deleted. Call this index set I and denote by DI(A) the corresponding
principal minor of A. Here are a few examples:

D∅ = det(A), D{1} = det

[
2 1
1 6

]
= 11, D{2} = det

[
1 6
6 6

]
= −30, D{1,3} = det

[
2
]

= 2.

Here are now various characterizations of a positive semidefinite/definite matrix.

Definition 6.1.9. A symmetric matrix A ∈ Rn×n is positive semidefinite, denoted A � 0, if any of the
following equivalent conditions are true:

1. x>Ax ≥ 0 for all x ∈ Rn, i.e., the graph of qA(x) = x>Ax is on or above the domain Rn.

2. All eigenvalues of A are non-negative.

3. There exists some matrix B such that A = B>B.

4. All principal minors of A are non-negative.

Definition 6.1.10. A symmetric matrix A ∈ Rn×n is positive definite, denoted A � 0, if any of the
following equivalent conditions are true:

1. x>Ax > 0 for all nonzero x ∈ Rn.

2. All eigenvalues of A are positive.

3. There exists some matrix B such that A = B>B with B having linearly independent columns.

4. All leading principal minors of A are positive.

Note that saying that a matrix is of the form B>B is the same as saying that it is of the form CC> since
we can take C = B>. Recall that when we studied orthogonal projections, we saw that A>A is invertible if
and only if the columns of A are independent. In this case, A>A � 0. Note also that all PD matrices are
PSD and all PD matrices are invertible since if A � 0, then det(A) > 0 as it is one of the leading principal
minors of A. PSD matrices on the other hand are not all invertible.

We will see later why the conditions given above are equivalent. First let’s look at some examples.

51

Example 6.1.11. The matrix A =

[
1 2
2 4

]
is PSD. Let us check all four conditions:

1. The quadratic form qA(x, y) =
[
x y

] [1 2
2 4

] [
x
y

]
= x2 + 4xy+ 4y2 = (x+ 2y)2 ≥ 0 for all (x, y) ∈ R2.

2. The eigenvalues of A are 0 and 5 which are both non-negative.

3. The matrix A can be factorized as B>B:[
1 2
2 4

]
=

[
1
2

]
︸︷︷︸
B>

[
1 2

]︸ ︷︷ ︸
B

.

There might be many ways to write such a factorization. For example if A = B>B where B ∈ Rk×n,
and Q is an orthonormal matrix in Rk×k, then also A = B>B = B>Q>QB = (QB)>(QB). Since
there are infinitely many orthonormal matrices Q in Rk×k, there are infinitely many factorizations of
A as B>B if there is one such factorization.

4. The 1 × 1 principal minors of A are 1 and 4. The 2 × 2 principal minor is det(A) = 0. All of these
values are non-negative. This matrix is not invertible.

Example 6.1.12. The matrix A =

2 1 1
1 2 1
1 1 2

 is PD.

1. The quadratic form

qA(x, y) =
[
x y z

] 2 1 1
1 2 1
1 1 2

xy
z

 = 2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz = (x+ y + z)2 > 0

for all nonzero (x, y, z) ∈ R3.

2. The eigenvalues of A are 1, 1, and 4 which are all positive.

3. One can show that

A =

1 1 0
0 1 1
1 0 1


︸ ︷︷ ︸

B>

1 0 1
1 1 0
0 1 1


︸ ︷︷ ︸

B

Note that B has linearly independent columns and is thus invertible.

4. The leading principal minors of A are 2, 3 and 4 which are all positive. The matrix A is invertible.

Example 6.1.13. We can construct any number of PSD matrices by choosing a B ∈ Rk×n and taking
A = B>B. If rank(B) = k, we know from homework that rank(A) = rank(B>B) ≤ k.

In particular, the rank one PSD matrices of size n×n are exactly those of the form vv> where v ∈ Rn and
v 6= 0. Think about why this is true. Any matrix of the form vv> is PSD and if v 6= 0, then rank(vv>) = 1.
Why is it that all rank one PSD matrices can be written this way? We’ll revisit this later.

We now argue why the first three conditions in the definition of a PSD matrix are equivalent. A similar
reasoning holds for PD matrices.

Proposition 6.1.14. A symmetric matrix A ∈ Rn×n is PSD if and only if any of the following conditions
hold:

52

1. x>Ax ≥ 0 for all x ∈ Rn.

2. All eigenvalues of A are non-negative.

3. There exists a matrix B ∈ Rk×n for some k such that A = B>B.

Proof. 1. We first show that x>Ax ≥ 0 for all x ∈ Rn if and only if all eigenvalues of A are non-negative.
Suppose x>Ax ≥ 0 for all x ∈ Rn and Au = λu. Then u>Au = u>λu = λu>u = λ||u||2. Therefore,

x>Ax ≥ 0 ∀x ∈ Rn ⇒ u>Au ≥ 0 ⇒ λ‖u‖2 ≥ 0 ⇒ λ ≥ 0

Now suppose λi ≥ 0 for all i, and u1, . . . ,un is an orthonormal set of eigenvectors of A with Aui = λiui.
Since A is symmetric, we have that u1, . . . ,un form a basis of Rn. Now we get that

0 ≤ λi‖ui‖2 = u>i Aui ∀ i

If x ∈ Rn, then x = c1u1 + · · ·+ cnun for some constants c1, . . . , cn ∈ R. Computing x>Ax we get

x>Ax = (
∑

ciu
>
i)A(

∑
ciui) =

n∑
i=1

c2iu
>
i Aui +

∑
i 6=j

cicju
>
i Auj =

∑
c2iu
>
i Aui ≥ 0.

The term
∑
i 6=j cicju

>
i Auj = 0 since each of its terms, cicju

>
i Auj = cicju

>
i λjuj = cicjλju

>
i uj = 0

because u>i uj = 0 whenever i 6= j.

2. Next, we show that if A = B>B then x>Ax ≥ 0 for all x ∈ Rn. Indeed,

A = B>B ⇒ x>Ax = x>B>Bx = (Bx)>(Bx) = ||Bx||2 ≥ 0 ∀x.

Conversely, suppose A is symmetric and x>Ax ≥ 0. Since A is symmetric it has an orthonormal
diagonalization, A = QΛQ>. Since x>Ax ≥ 0 ≥ 0, from the previous proof we know that all λi ≥ 0,
and so Λ ≥ 0. Define

√
Λ =


√
λ1

. . . √
λn


which is well defined since λi ≥ 0 for all i, and set B =

√
ΛQ>. Since

√
Λ is diagonal, it equals its

transpose, and we get that

B>B = (
√

ΛQ>)>(
√

ΛQ>) = Q
√

Λ
>√

ΛQ> = Q
√

Λ
√

ΛQ> = QΛQ> = A.

6.2 Gram Matrices

Matrices of the form B>B are called Gram matrices. Suppose B ∈ Rk×n with columns b1, . . . ,bn ∈ Rk.
Then

B>B =


b>1
b>2
...

b>n

 [b1 b2 · · · bn
]

=


b>1 b1 b>1 b2 · · · b>1 bn
b>2 b1 b>2 b2 · · · b>2 bn

...
...

...
...

b>nb1 · · · · · · b>nbn

 =


‖b1‖2 b>1 b2 · · · b>1 bn
b>2 b1 ‖b2‖2 · · · b>2 bn

...
...

...
...

b>nb1 · · · · · · ‖bn‖2


We saw that all Gram matrices are PSD and that all PSD matrices are Gram matrices. In particular, all

PSD matrices have the special form you see in the last matrix of the above chain.

53

Lemma 6.2.1. If the columns b1, . . . , bn of B ∈ Rk×n are linearly independent, then B>B is PD.

Proof. Note that if b1, . . . ,bn are linearly independent, then k ≥ n and Bx = 0 if and only if x = 0.
Therefore, if x 6= 0, then ‖Bx‖2 > 0 which implies that (Bx)>(Bx) = x>B>Bx > 0 for all x 6= 0.
Therefore, B>B � 0.

This gives an alternate proof for why when the columns of B are linearly independent, B>B is invertible
since in this case, B>B � 0 which means that det(B>B) 6= 0.

How about the converse of the above lemma which is one of the definitions of a PD matrix?

Lemma 6.2.2. If A ∈ Rn×n is PD then A = B>B with columns of B linearly independent.

Proof. Since A is symmetric we saw earlier that we can choose B =
√

ΛQ> ∈ Rn×n where A = QΛQ> is
an orthonormal diagonalization of A. Since A � 0, all its eigenvalues are positive and so Λ is invertible
and hence

√
Λ is also invertible. This means that B is invertible since det(B) = det(

√
Λ) det(Q>) 6= 0. We

conclude that the columns of B are linearly independent.

6.3 Application: Connectivity of a Graph

Definition 6.3.1. Let G be a graph with n vertices labeled 1, 2, . . . , n. The degree of vertex i, denoted
di, is the number of edges incident to vertex i.

Example 6.3.2. In the following graph G, d1 = 2, d2 = 3, d3 = 1, d4 = 2.

1 2 3

4

Let DG ∈ Rn×n be the diagonal matrix whose ith diagonal entry is di. For the graph G above we have

DG =


2 0 0 0
0 3 0 0
0 0 1 0
0 0 0 2


Recall that the adjacency matrix of a graph G is the symmetric matrix AG = (aij) ∈ Rn×n with

aij =

{
1 if ij is an edge in G

0 otherwise

We can now define the Laplacian of a graph G which is a very important PSD matrix associated to G.

Definition 6.3.3. Let G be a graph with n vertices, diagonal matrix of vertex degrees DG as above, and
adjacency matrix AG. The Laplacian of G is

LG = DG −AG ∈ Rn×n.

In our example graph,

AG =


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

 and LG = DG −AG =


2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2


The Laplacian LG holds a tremendous amount of information about G. Here are some facts:

54

• λ = 0 is always an eigenvalue of LG with eigenvector 1: Note that each row of LG sums to 0. Therefore,
LG1 = 0.

• LG is always positive semidefinite: To prove this we argue that LG = BGB
>
G where BG is the “di-

rected” node-edge incidence matrix of G computed as follows:

– Label the rows of BG by the vertices of the graph G.

– For each edge of G, pick a direction. If the edge has end points i and j, then label the edge ij if
the arrow on the edge points from i to j. In our example, the directions shown below creates the
edge labels 12, 14, 23, 24.

1 2 3

4

– Label the columns of BG by the edge labels. Now each entry in BG has row label k (from the kth
vertex) and column label ij (from edge ij directed from i to j). The value of this entry is set to

bk,ij =


1 k = i

−1 k = j

0 otherwise

With our graph G, the rows of BG have labels 1, 2, 3, 4 and the columns have labels 12, 14, 23, 24 and

BG =


1 1 0 0
−1 0 1 1
0 0 −1 0
0 −1 0 −1


Put differently, in the column indexed by directed edge ij, we put a 1 in row i and −1 in row j. Now
check for yourself that

LG = BGB
>
G

In our example,

LG =


2 −1 0 −1
−1 3 −1 −1
0 −1 1 0
−1 −1 0 2

 =


1 1 0 0
−1 0 1 1
0 0 −1 0
0 −1 0 −1


︸ ︷︷ ︸

BG


1 −1 0 0
1 0 0 −1
0 1 −1 0
0 1 0 −1


︸ ︷︷ ︸

B>G

Therefore , LG is PSD which means that all its eigenvalues are nonnegative.

Let us summarize our discussion so far.

Lemma 6.3.4. The Laplacian LG of a graph G is positive semidefinite and its eigenvalues are

0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn

The all-ones vector 1 is an eigenvector of LG with eigenvalue 0.

Since LG is PSD, the quadratic from x>LGx ≥ 0 for all x ∈ Rn. This quadratic form can be understood
explicitly.

55

Proposition 6.3.5. Let G = ([n], E) be a graph with n vertices and edge set E. If x = (x1, . . . , xn)>,

x>LGx =
∑
{ij}∈E

(xi − xj)2.

Proof. Since LG = BGB
>
G , x>LGx = x>BGB

>
Gx. Consider x>BG. The column of BG indexed by edge ij

has 1 in position i and −1 in position j. Therefore the dot product of x> with that column is xi − xj , and
the vector x>BG which is indexed by the edges of G has entry xi−xj in position ij. The vector B>Gx is the
transpose of x>BG and so x>BGB

>
Gx is

∑
ij∈E(xi − xj)2.

Check this claim in our example:

x>LGx = (x>BG)(B>Gx) =
[
x1 x2 x3 x4

] 
1 1 0 0
−1 0 1 1
0 0 −1 0
0 −1 0 −1


︸ ︷︷ ︸

BG


1 −1 0 0
1 0 0 −1
0 1 −1 0
0 1 0 −1


︸ ︷︷ ︸

B>G


x1

x2

x3

x4



=
[
(x1 − x2) (x1 − x4) (x2 − x3) (x2 − x4)

] 
(x1 − x2)
(x1 − x4)
(x2 − x3)
(x2 − x4)


= (x1 − x2)2 + (x1 − x4)2 + (x2 − x3)2 + (x2 − x4)2 =

∑
{ij}∈E

(xi − xj)2

We now come to our main application. A graph G is connected if there is a way to travel from any
vertex in G to any other vertex in G by moving along a sequence of edges in G. The graph in our example
is connected. Knowing the connectivity of a graph has many applications. For example, suppose G is a
road network where vertices are cities and edges are roads. Then if G is disconnected, there will be a clump
of cities that cannot be accessed by road from other cities. For another example, it might be that G is
a communication network that is connected at the start, but due to an earthquake becomes disconnected,
isolating groups of people. Deciding the connectivity of a graph is one of the most basic questions about a
graph. It turns out that the second eigenvalue of LG decides if G is connected.

Theorem 6.3.6. Let G = ([n], E) be a graph with Laplacian matrix LG whose eigenvalues are 0 = λ1 ≤
λ2 ≤ λ3 ≤ · · · ≤ λn. Then G is connected if and only if λ2 > 0.

Before we prove this theorem, let us do an example. Consider the following disconnected graph G:

1 2 4

3 6

5

The Laplacian LG breaks up into blocks, with each block corresponding to a connected part of G and
the zero blocks coming from the lack of connectivity between the two connected components of G.

LG =


2 −1 −1
−1 2 −1
−1 −1 2

0

0
2 −1 −1
−1 2 −1
−1 −1 2



56

Now we can explicitly find two linearly independent eigenvectors of LG with eigenvalue 0 by leveraging
the fact that the individual Laplacians of the connected subgraphs of G have 1 as an eigenvector of eigenvalue
zero. In our example, check that the following two vectors are linearly independent eigenvectors of 0:

1
1
1
0
0
0

 and


0
0
0
1
1
1


This tells us that GM(0) ≥ AM(0) ≥ 2, and hence 0 = λ1 = λ2.

This idea works in general whenever G is disconnected. Suppose G has k ≥ 2 connected components.
Then LG will break into k diagonal blocks, one for each connected component of G, and by stacking 0s above
and below the all-ones eigenvector of each component, we can build k linearly independent eigenvectors of
LG with eigenvalue 0. This means that GM(0) ≥ k and hence λ2 = 0. Let us write a proof of the converse,
namely that if G is connected then λ2 > 0.

Proof. We will show that if G is connected then AM(0) = 1. Since LG is symmetric, GM(0) = AM(0) and
we can conclude that λ2 6= λ1 = 0. Since LG is PSD, all its eigenvalues are nonnegative and we conclude
that λ2 > 0.

Let u be an eigenvector of LG with eigenvalue 0. Then u 6= 0. The fact that LGu = 0 implies that

0 = u>LGu =
∑
{ij}∈E

(ui − uj)2.

Since each summand, (ui − uj)2 is non-negative, it must be true that ui = uj for all ij ∈ E. Since G is
connected, there is a way to walk from vertex 1 to any other vertex j along edges of G. Therefore, if u1 = c
then it must be that uk = c for all vertices k in the path from 1 to j. This argument shows that u = c1, a
multiple of 1. If u1 = 0 then by the same argument u = 0 which is a contradiction. Therefore, u1 6= 0 and
we conclude that every eigenvector of 0 is a multiple of 1. Hence AM(0) = GM(0) = 1 and so λ2 > 0.

The second eigenvalue λ2 of LG is known as the spectral gap of G. It is also called the Fiedler value of G
and measures the connectivity of the graph G. The larger λ2 is, the more connected G is. The spectral gap is
extremely useful in clustering algorithms which we will see next. For a very nice article on graph connectivity
and clustering take a look at https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

6.4 Application: Spectral Clustering

This is Part 1 of spectral clustering which is to be followed by a star problem in homework that completes
it. This part used to be a homework problem and is left as a series of exercises to be discussed in class.

Recall the color conventions from star problems: (i) problem statements, (ii) math formulations, (iii)
commentary/philosophy, (iv) running example (nothing asked in red needs to be written up), (v) ♠ action items.

The second smallest eigenvalue λ2 of the Laplacian LG of a graph G is called the Fiedler value of G, and an

eigenvector w of λ2 is called a Fiedler vector of G. We saw that G is connected if and only if λ2 > 0. Here is an

application of the Fiedler vector w.

An important task in data science is to find clusters in a graph. By a cluster we mean a group of vertices that are

relatively well connected amongst themselves but not so well connected to the rest of the graph. For example, suppose

G is a social network graph with people as vertices and an edge between two people who know each other. Then

some natural clusters might be all people who belong to the same church, or soccer club, or do Tai Chi. Someone

from church may know someone who does Tai Chi, but perhaps there are only a few such pairs. Knowing clusters in

graphs allows one to understand how information or infection might spread in the network. Advertisers use cluster

57

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

information to target similar ads to people in a given cluster. If you bought a particular knee brace for soccer, then

chances are that your soccer friends might also buy it, where as your church friends may not. In this exercise we will

use linear algebra to find clusters in a graph.

Running example: The graph below is a reproduction of the example from https://towardsdatascience.

com/spectral-clustering-aba2640c0d5b with vertices relabeled as 1, . . . , 10.

6

5 4 3 2

1

9107 8

This graph has two obvious clusters in it, the cluster of vertices {4, 5, 6, 7, 8} and the cluster of vertices {1, 2, 3, 9, 10}.
There is only one edge between these two groups while vertices in a group have more connections among them.

How do we find clusters in large complicated graphs? To talk about clusters, we use the math terminology
of cuts in graphs.

Definition 6.4.1. Let G be a graph with vertex set V = {1, 2, 3, . . . , n} and edge set E consisting of pairs
of vertices {i, j}. If A ⊆ V is a subset of vertices, we use the notation V \A for the vertices in V that are
not in A. Also, |A| denotes the cardinality of the set A, which is the number of elements in A.

In our example, V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and E = {{1, 2}, {1, 3}, {2, 3} . . .}. If A = {4, 5, 6, 7, 8}, then

|A| = 5, V \A = {1, 2, 3, 9, 10} and |V \A| = 5.

1. A cut in G is a partition of V into two sets A and V \A for some subset of vertices A ⊂ V . This is
sometimes called the cut induced by A.

2. Let E(A, V \A) be the edges that go between the vertices in A and V \A. These are the edges holding
A and V \A together in G. In our example, the cut induced by A = {4, 5, 6, 7, 8} has E(A, V \A) = {{1, 6}}.

Then the density of the cut induced by A is

φ(A, V \A) = n · |E(A, V \A)|
|A| · |V \A|

For A = {1, 3, 4, 5, 6, 7}, E(A, V \A) = {{1, 2}, {2, 3}, {1, 9}, {1, 10}, {6, 8}, {7, 8}} and φ(A, V \A) = 10· 6
6·4 = 5

2
.

Note that there are 6 edges between A and V \A but there could have been 6 · 4 = 24 between A and V \A
(which would have been the case if G was the complete graph K10). So 6

6·4 is the ratio of the number of edges

connecting A and V \A in this graph and in the complete graph. The cut density is the product of this ratio

and the total number of vertices, 10.

3. Let φG denote the smallest possible density of a cut in G. We call a cut with density φG, the sparsest
cut in G. What is the density of the cut induced by A = {4, 5, 6, 7, 8}? Do you think there is a sparser cut in

our example graph?

58

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b
https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

The questions below will be based on the following graph H:

1 2

34

5 6

7

89

Q1 ♠ Calculate the density of the cut in H induced by A = {1, 2, 3, 4}.

Below is an algorithm that uses the Fiedler vector w to break a graph into its two main clusters. Since

it uses eigenvalues and vectors, the method is called spectral clustering.

(a) Sort the components of w in descending order so that wi1 ≥ wi2 ≥ · · · ≥ win . In our running
example, Julia says that λ2 = 0.2984 and the Fielder vector

w = (0.23, 0.33, 0.33,−0.33,−0.33,−0.23,−0.33,−0.33, 0.33, 0.33).

One way to sort the components of w is as

w2 ≥ w3 ≥ w9 ≥ w10 ≥ w1 ≥ w6 ≥ w4 ≥ w5 ≥ w7 ≥ w8.

In our notation, i1 = 2, i2 = 3, i4 = 9 When two components tie in value, you can break the tie as

you wish.

(b) Let Ak := {i1, . . . , ik} for k = 1, . . . , n− 1. Among the cuts (Ak, V \Ak), output the one with the
smallest density. In our example, A1 = {2}, A2 = {2, 3}, A3 = {2, 3, 9}, A4 = {2, 3, 9, 10} etc. The cut

(A4, V \A4) has density 10 4
4·6 = 5

3
. For practice, find A5 and its cut density.

Q2 (a) ♠ Calculate the Fiedler value λ2 and its eigenvector w for H using Julia. (I would suggest just
finding the Laplacian of H and typing it directly into Julia. Coding graphs into Julia is more
involved).

(b) ♠ Sort the components of w and find all the sets A1, . . . , A8.

(c) ♠ Pick one Ai from your list such that the density of the cut it induces has a chance to be sparser
than the cut induced by {1, 2, 3, 4}. Compute the density of this cut.

The following theorem says how well the above algorithm can do.

Theorem 6.4.2. The following hold for G:

1. φG ≥ λ2.

2. The above algorithm always finds a cut of density at most 4
√
dGλ2 where dG is the largest degree of a

vertex in G.

Q3 (a) ♠ Argue that this theorem is saying that λ2 ≤ φG ≤ 4
√
dGλ2.

(Hint: The sparsest cut output by the algorithm may not be the overall sparsest cut in G.)

(b) ♠ What are these bounds for φG in H?

59

Call a vector x non-constant if it is not a multiple of 1 = (1, 1, . . . , 1). For x = (x1, . . . , xn), define the
function

Q(x) = n ·
∑
{i,j}∈E(G)(xi − xj)2∑
1≤i<j≤n(xi − xj)2

Note that the numerator is x>LGx and the denominator is the same quadratic function for the complete
graph on n vertices, i.e., x>LKnx.

For a subset A ⊆ V , let cA be the vector in Rn with ith coordinate equal to 1 if i ∈ A and 0 otherwise.
This is called the characteristic vector of A. In our running example, if we take A = {4, 5, 6, 7, 8}, then

cA = (0, 0, 0, 1, 1, 1, 1, 1, 0, 0), and Q(cA) = 2
5

= φ(A, V \A).

Q4 ♠ Compute the characteristic vector cA for A = {1, 2, 3, 4} in H, and check that for this A, Q(cA) is
exactly the density of the cut induced by A.

Q5 (a) ♠ Argue that φG is the minimum of Q(x) as x varies over all cA.

(b) ♠ If you were to use this method to find φG how many cA’s would you need to compute in the
graph G shown above? Hopefully you see that this is not a very practical way to find φG.

The star problem in homework is to prove part 1 of the theorem.

6.5 Application: Distance Realization

We end the chapter with one last application of positive semidefinite matrices.

Question 6.5.1. Are there three points p,q, r ∈ R2 such that

||p− q|| = ||q− r|| = 1 and ||p− r|| = 3?

The answer is no! The reason is because of the triangle inequality which creates the contradiction

||p− r|| ≤ ||p− q||+ ||q− r|| =⇒ 3 ≤ 2

For three distances, the triangle inequality is the only restriction, i.e., given x, y, z ≥ 0 such that

x ≤ y + z, y ≤ x+ z, z ≤ x+ y

there are always three points p,q, r ∈ R2 such that ‖p− q‖ = x, ‖p− r‖ = y, ‖q− r‖ = z.
We could investigate the same sort of question in higher dimensions. For example, are there four points

p,q, r, s ∈ R3 with the distances shown in Figure 6.5? The answer is no! However, the triangle inequality
presents no problems this time.

The following theorem, known as Schoenberg’s theorem, allows us to answer the question in general.

Theorem 6.5.2. (Schoenberg 1935) Given “distances” dij ≥ 0 for i, j = 0, 1, . . . , n and dii = 0 for all i,
there exist points p0,p1, . . . ,pn ∈ Rn with ||pi−pj || = dij if and only if the matrix M = (Mij) ∈ Rn×n with

Mij = 1
2 (d2

i0 + d2
0j − d2

ij) is positive semidefinite. If such points p0,p1, . . . ,pn exist we say that the given
distances dij are realizable.

Before proving the theorem, we illustrate its use on the above example with four distances. Let D ∈
R(n+1)×(n+1) be the matrix of distances. The rows and columns of D are indexed 0, 1, . . . , n. In our four
point example, the distance matrix is

D =


0 2 3 2
2 0 2 3
3 2 0 2
2 3 2 0


60

Figure 6.5: Four distances

The matrix M = (Mij) in the theorem lives in Rn×n and has Mij = 1
2 (d2

i0 + d2
0j − d2

ij). In our example,

M =
1

2

 8 9 −1
9 18 9
−1 9 8


A quick computation shows that det(M) < 0 and hence M is not PSD. By Schoenberg’s theorem, the given
distances are not realizable.

Now let’s prove the theorem. We will need to use the cosine theorem from precalculus which says that
the length of one side of a triangle can be expressed in terms of the lengths of the other two sides and the
cosine of the angle between them. We state that fact using dot products. Please think about why this is the
same statement.

Lemma 6.5.3. Given x,y ∈ Rn
||x− y||2 = ||x||2 + ||y||2 − 2x>y

Alternatively,

x>y =
1

2
(||x||2 + ||y||2 − ||x− y||2)

Proof. (of Schoenberg’s Theorem) We first assume that the distances are realizable and aim to show
that M � 0. If the distances are realizable then there exist points p0,p2, . . . ,pn ∈ Rn such that

||pi − pj || = dij ∀ 0 ≤ i, j ≤ n

Since translating the whole configuration of points does not affect the distances among them, we may assume
that p0 = 0. Next, set xi = pi − p0 for i = 1, . . . , n. This implies that ||xi|| = di0 = d0i, ||xj || = d0j = dj0,
and dij = ||xi − xj ||. By the cosine theorem, we have

x>i xj =
1

2
(||xi||2 + ||xj ||2 − ||xi − xj ||2) =

1

2
(d2
i0 + d2

0j − d2
ij) = Mij

This means that

M = (Mij) = (x>i xj) =


x>1
x>2
...

x>n

 [x1 x2 · · · xn
]

= B>B

which is a Gram matrix. Therefore, M is positive semidefinite.
The other direction follows similarly. If M is positive semidefinite, then M = B>B for some matrix

B ∈ Rk×n. Set p0 = 0 and pi = bi, the ith column of B, for i = 1, . . . , n. Then we have Mij = p>i pj . In
particular, Mii = d2

0i = ‖pi‖2 and so ‖pi‖ = d0i for all i. Then using the cosine theorem,

1

2
(d2
i0 + d2

0j − d2
ij) = Mij = p>i pj =

1

2
(||pi||2 + ||pj ||2 − ||pi − pj ||2) =

1

2
(d2
i0 + d2

0j − ||pi − pj ||2)

61

and we conclude that ‖pi − pj‖ = dij for all i, j. Thus the points p0, . . . ,pn realize the distances dij .

Note that this direction tells you how to find the points pi and also that they live in Rk where k is the
number of rows in B. To find the smallest dimension in which the points can live, we need to minimize k
for which there is a B ∈ Rk×n such that M = B>B. This is the rank of M . So not only does M tell you
if the distances are realizable, it also tells you the smallest dimension in which you can find the realization.
By factorizing M you also get the points. Very clever!!

Schoenberg’s theorem is part of an area of mathematics called distance geometry. There are many
beautiful theorems about distances which have a huge number of real world applications. See the article
Six mathematical gems from the history of distance geometry by Leo Liberti and Carlile Lavor for example:
https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12170.

Distance geometry is used in chemistry and biology to model molecules. You might obtain the distances
between pairs of atoms in a molecule using NMR (nulear magnetic resonance) which is like an MRI, and
your job is to reconstruct a three-dimensional model of how the atoms are configured in the molecule. See for
example Figures 6 and 8 in the article Distance Geometry: Theory, Algorithms and Chemical Applications
by Timothy Havel http://web.mit.edu/tfhavel/www/Public/dg-review.pdf. This sort of mathematics
also underlies the very important problem of protein folding. Check out the webpage of the Baker Lab at
UW for more on protein folding.

62

https://onlinelibrary.wiley.com/doi/full/10.1111/itor.12170
http://web.mit.edu/tfhavel/www/Public/dg-review.pdf

Chapter 7

Polynomial Vector Spaces

In this chapter we will see three vector spaces that are filled with polynomials, and applications of such
spaces. This might be the first time you are seeing vector spaces different from Rn, but there are many such
examples, and we will see a few more in the rest of the lectures.

7.1 Univariate Polynomials

A univariate polynomial over R is a polynomial in one variable with coefficients in R. As a running example
in this chapter, consider

p(x) = x5 − 20x4 + 8x2 − 10.

The monomials in x are the pure powers of x, namely, 1 = x0, x, x2, x3, x4, . . . and every univariate polynomial
in x is a linear combination over R of finitely many monomials in x. The polynomial p(x) has degree 5, the
highest power of x in p(x). The terms of p(x) are x5,−20x4, 8x2 and −10. Each term is the product of
a monomial in x with a coefficient that is a real number. The leading term of p(x) is x5 and its leading
coefficient is 1. Note that there is no x3 term and no x term in p(x). The coefficients of p(x) are the
coefficients of all terms in p(x) of degree at most 5 including the missing terms. In this example, the
coefficients of p(x) are −10, 0, 8, 0,−20, 1 written in increasing order of the degree of the monomials they
appear with. If we know apriori that p(x) has degree 5, then we can uniquely represent p(x) by its coefficient
vector (−10, 0, 8, 0,−20, 1) ∈ R6.

Definition 7.1.1. The general univariate polynomial over R of degree d is

f(x) = adx
d + ad−1x

d−1 + ad−2x
d−2 + · · ·+ a1x+ a0

where the coefficients a0, a1, . . . , ad−1, ad are real numbers and ad 6= 0. It can be uniquely represented by its
coefficient vector (a0, a1, a2, . . . , ad) ∈ Rd+1.

7.1.1 The infinite-dimensional vector space R[x]
The set of all polynomials in x with real coefficients is denoted as R[x] and called the univariate polynomial
ring over R. Let’s quickly check that R[x] is a vector space. If

f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 and g(x) = btx
t + bt−1x

t−1 + · · ·+ b1x+ b0

are two polynomials of degrees d and t respectively, then

f(x) + g(x) = adx
d + ad−1x

d−1 + ad−2x
d−2 + · · ·+ a1x+ a0 + btx

t + bt−1x
t−1 + bt−2x

t−2 + · · ·+ b1x+ b0

63

is a polynomial in R[x] of degree max(d, t). You can rewrite this sum so that the terms have decreasing
degrees if you wish. Also, if γ ∈ R then

γf(x) = γadx
d + γad−1x

d−1 + γad−2x
d−2 + · · ·+ γa1x+ γa0

which is again a polynomial in R[x] of degree d, unless γ = 0 in which case, γf(x) = 0. Therefore, R[x] is a
vector space over R. A basis of R[x] is

B = {1 = x0, x, x2, x3, . . . , }

called the monomial basis of R[x]. Any polynomial is a linear combination of finitely many elements of B
and hence R[x] = Span(B). Check that the elements of B are linearly independent. Indeed the only way
that a linear combination of monomials is 0 is if all scalars in the combination are 0. This also means that
R[x] is an infinite dimensional vector space since B has infinite size. This might be your first encounter with
an infinite-dimensional vector space, so pause to make sure you agree with everything so far.

7.1.2 The finite-dimensional vector space R[x]≤d

Now suppose we restrict the degree of the polynomials we consider. For example, suppose we only want to
look at polynomials of degree at most five, i.e., d ≤ 5. Then we get a subset of R[x] denoted as R[x]≤d. Please
check that this is again a vector space since the sum of any two polynomials of degree at most 5 is again
a polynomial of degree at most 5 and scaling a polynomial of degree at most 5 creates another polynomial
of degree at most 5. Therefore, R[x]≤5 is a subspace of R[x]. Further, any polynomial of degree at most 5
is a linear combination of 1, x, x2, x3, x5, and since B5 := {1, x, x2, x3, x5} is a subset of B, its elements are
linearly independent. Therefore, B5 is a basis of R[x]≤5 and dim(R[x]≤5) = 6. More generally,

Proposition 7.1.2. For any positive integer d, let R[x]≤d be the set of all univariate polynomials of degree
at most d. Then R[x]≤d is a subspace of R[x]. It has the monomial basis Bd := {1, x, x2, . . . , xd} and
dim(R[x]≤d) = d+ 1.

As we noted before, there is a bijection between R[x]≤d and Rd+1 obtained by identifying a polynomial
with its coefficient vector. Check that under this identification, addition and scalar multiplication in R[x]≤d
are the same as addition and scalar multiplication of coefficient vectors. This identification will be very useful
when we consider applications. Since R[x] and R[x]≤d are vector spaces they admit linear transformations.
You will see in homework that the familiar operation of differentiation is one such linear transformation.

7.1.3 Polynomial Interpolation

Question: Given m points t1, t2, . . . , tm ∈ R, is there a polynomial f(x) of degree d that has values
β1, β2, . . . , βm at t1, t2, . . . , tm?

Mathematically, we are looking for coefficients ad, ad−1, . . . , a0 ∈ R with ad 6= 0 such that the polynomial
f(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0 has the evaluations

f(t1) = β1, f(t2) = β2, . . . , f(tm) = βm

This question arises in many experimental situations where at time ti we make a measurement βi and
we want to know if there is a polynomial f of some specified degree d that fits our data in the sense that
f(ti) = βi. If such a polynomial exists then you might be able to use it to “explain” the behavior of the
phenomenon you are studying at all time points, not just the times at which you made measurements. We’ll
now use linear algebra to answer the above question.

64

Here is an algorithm to solve this problem.

1. Set f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 where ad, ad−1, . . . , a0 are unknown (they are variables).

2. Evaluating f(x) at each ti we get the equations:

adt
d
1 + ad−1t

d−1
1 + · · ·+ a1t1 + a0 =β1

adt
d
2 + ad−1t

d−1
2 + · · ·+ a1t2 + a0 =β2

adt
d
3 + ad−1t

d−1
3 + · · ·+ a1t3 + a0 =β3

...

adt
d
m + ad−1t

d−1
m + · · ·+ a1tm + a0 =βm

3. Express the above equations as M f = b where f is the unknown vector of coefficients of f(x).


1 t1 t21 · · · td−1

1 td1
1 t2 t22 · · · td−1

2 td2
1 t3 t23 · · · td−1

3 td3
...

...
...

...
...

1 tm t2m · · · td−1
m tdm


︸ ︷︷ ︸

M



a0

a1

a2

...
ad−1

ad


︸ ︷︷ ︸

f

=


β1

β2

β3

...
βm


︸ ︷︷ ︸

b

4. Note that the matrix M and the vector b are filled with known numbers. There is a polynomial f(x)
with f(ti) = βi if and only if the system M f = b has a solution. We also need this solution to have
ad 6= 0 if we want f(x) to have degree d. Solutions with ad = 0 give polynomials of lower degree that
have f(ti) = βi.

Comments:

1. The matrix M , which has the very special structure you see above, is called a m×(d+1) Vandermonde
matrix. You construct a m×(d+1) Vandermonde matrix by picking m numbers t1, . . . , tm and making
the ith row of M equal to (1, ti, t

2
i , . . . , t

d
i).

2. If m < d + 1 then the system M f = b might have infinitely many solutions and if m > d + 1 it may
have no solutions.

3. There is a unique polynomial f(x) with f(ti) = βi if and only if M is a square invertible matrix. This
requires m = d+ 1, i.e., we need values of f at m = d+ 1 points in R.

4. When M is a square k × k Vandermonde matrix, det(M) = (−1)k
∏
i<j(ti − tj). This is not obvious,

but means that M is invertible if and only if ti 6= tj for any pair i, j. In other words, we need to
measure at distinct times in our experiment.

5. Note that we have identified the polynomial f(x) with its coefficient vector f in the above calculation.
This identification allows polynomials to be used in linear algebra.

In homework we will develop polynomial interpolation further.

65

7.2 Solving a Univariate Polynomial Equation

Recall that all the values of x for which p(x) = 0 are called the roots of p(x). By the Fundamental Theorem
of Algebra, if degree(p(x)) = d then p(x) has d roots, some of which may be complex or might occur more
than once. For example, the polynomial f(x) = x3 − 7x − 6 = (x + 2)(x + 1)(x − 3) has three real roots,
namely x = −2,−1, 3. The graph of f(x) can be seen in Figure 7.1. The graph crosses the x-axis at the
roots of the polynomial.

Figure 7.1: The graph of the polynomial x3 − 7x− 6 = (x+ 2)(x+ 1)(x− 3).

Example 7.2.1. The general quadratic polynomial is q(x) = ax2 + bx + c = 0 where a, b, c ∈ R. Its two
roots are

x =
−b±

√
b2 − 4ac

2a

The quantity b2 − 4ac is the discriminant of the quadratic polynomial q(x). The quadratic formula shown
above tells us the following:

1. If b2 − 4ac > 0, then q(x) has two real roots.

2. If b2 − 4ac = 0 then q(x) has a double real root,

3. and if b2 − 4ac < 0, q(x) has two complex roots of the form α+ iβ and α− iβ.

Try making examples of quadratics that have all these possibilities.

Idea to solve p(x) = 0:
Suppose we could find a matrix Ap such that p(x) is the characteristic polynomial of Ap. Then the roots of

p(x) would be the eigenvalues of Ap.
We will see that this is always possible!!

We first give the algorithm and illustrate on an example. Then we will see why the algorithm works.

1. Input: p(x) = adx
d + ad−1x

d−1 + ad−1x
d−2 + · · ·+ a1x+ a0

2. Set up the following d× d matrix

Ap =



0 0 0 0 · · · 0 −a0/ad
1 0 0 0 · · · 0 −a1/ad
0 1 0 0 · · · 0 −a2/ad
0 0 1 0 · · · 0 −a3/ad
...

...
...

0 0 0 0 · · · 1 −ad−1/ad


66

3. The characteristic polynomial of Ap, namely det(Ap − λI), is either p(λ) or −p(λ). Therefore, the
eigenvalues of Ap are the roots of p(x).

Let’s use Julia to find the roots of the polynomial p(x) = x5 − 20x4 + 8x2 − 10.

Example 7.2.2. See Julia documentation on polynomials if the following commands are not self evident.

julia> using Polynomials

julia> p = Poly([-10,0,8,0,-20,1])

Poly(-10 + 8*x^2 - 20*x^4 + x^5)

julia> roots(p)

5-element Array{Complex{Float64},1}:

-0.6685161487282535 - 0.4961354572272264im

-0.6685161487282535 + 0.4961354572272264im

0.6785047807938136 - 0.5116507106132901im

0.6785047807938136 + 0.5116507106132901im

19.980022735868893 + 0.0im

The polynomial p(x) has 5 roots as expected. The last one is real. The other 4 are complex and come in
conjugate pairs: a+ ib and a− ib. Recall that if a polynomial with real coefficients has complex roots then
the complex roots come in conjugate pairs.

Figure 7.2: On the left we see the graph of p(x) = x5 − 20x4 + 8x2 − 10. In the middle it is zoomed in
around the origin so you can see that the graph is below the x-axis. On the right the graph is zoomed in
near x = 20 and you can see there is a real root near 20.

Now we set up the matrix Ap as follows. Call it A in Julia.

julia> A = [0 0 0 0 10; 1 0 0 0 0; 0 1 0 0 -8; 0 0 1 0 0; 0 0 0 1 20]

517Array{Int64,2}:

0 0 0 0 10

1 0 0 0 0

0 1 0 0 -8

0 0 1 0 0

0 0 0 1 20

julia> using LinearAlgebra

67

julia> eigvals(A)

5-element Array{Complex{Float64},1}:

-0.6685161487282542 - 0.4961354572272264im

-0.6685161487282542 + 0.4961354572272264im

0.678504780793814 - 0.5116507106132913im

0.678504780793814 + 0.5116507106132913im

19.98002273586887 + 0.0im

Check that the eigenvalues of A are exactly the roots of p(x).

There are two ways to see that our algorithm works. A first mechanical proof is below. A second proof
follows from understanding quotients of polynomial rings which is the content of the next section.

A mechanical proof: Check that the determinant of Ap − λI is exactly p(λ) or −p(λ). The best
strategy is to expand the determinant along the last column and you will see that this will work out. Try
it on some examples first and this might help you warm up for the general proof. You might need to know
some proof techniques like induction to do this precisely. For right now, just check it on examples and you
have a proof by example!

Some comments:

1. The matrix Ap is called the companion matrix of the polynomial p(x).

2. We see that every univariate polynomial is a determinant since it is the characteristic polynomial of
its companion matrix which is a determinant. It was, and continues to be, an interesting question in
mathematics to ask if a polynomial (in many variables) can be expressed as a determinant of special
classes of matrices. A positive answer can have good algorithmic consequences.

7.3 Quotients of R[x] (Optional)

We now introduce a more complicated vector space of polynomials called a quotient space of R[x]. The idea
is similar to how we look at integers mod a given integer.

7.3.1 Warm up: Integers mod 5

The set of integers mod 5, denoted as Z5, is the collection {[0], [1], [2], [3], [4]}. It is constructed as follows.
Take any integer a and suppose a = 5k + r where k is an integer, then we say that a is equal to r mod 5,
written as a ≡ r mod 5, and read as a is congruent to r mod 5. Equivalently a ≡ r mod 5 if and only if
a− r is a multiple of 5. The set of all integers congruent to 3 mod 5 is

[3] := {. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .}

Indeed, 8 ≡ 3 mod 5 since 8 = 5 + 3 and −2 ≡ 3 mod 5 since −2 = −1 · 5 + 3. For any two elements of this
set such as 13 and 23, their difference 13− 23 is a multiple of 5 We can represent the above set by any one
of its elements since all other elements differ from the chosen one by multiples of 5. It is conventional to use
the smallest nonnegative integer in the set to represent the set. In the above example this integer is 3 and
we say that the set shown is the set of all integers congruent to 3 mod 5. We name the set [3] and call it the
congruence class of 3 mod 5. Note that if we divided any of the elements of the set by 5 we would get the
remainder 3. In theory it does not matter which element we choose to represent the set. In our example we
could have chosen 13 to represent the set and write the set as [13], but the convention is to use the common
remainder of all elements in the set on division by 5.

If r is the remainder obtained by dividing a with 5, then the possible values of r are 0, 1, 2, 3, 4. Each of
these remainders index a congruence class mod 5 in the same way as for 3. There are 5 equivalence classes

68

of integers mod 5 and we have represented them with the remainder on division by 5:

{. . . ,−15,−10,−5, 0, 5, 10, 15, . . .} = [0]

{. . . ,−14,−9,−4, 1, 6, 11, 16, . . .} = [1]

{. . . ,−13,−8,−3, 2, 7, 12, 17, . . .} = [2]

{. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .} = [3]

{. . . , . . . ,−6,−1, 4, 9, 14, 19, 24, 29, . . .} = [4]

The set of congruence classes is Z5, the integers mod 5. Note that each element represents an infinite
collection of integers, and that every integer falls into one of the classes.

7.3.2 Polynomials mod p(x)

We can do something similar in R[x]. Pick a polynomial p(x), say p(x) = x5 − 20x4 + 8x2 − 10 and create
equivalence classes of polynomials by saying that a(x) ≡ b(x) mod p(x) if a(x)− b(x) is a multiple of p(x).
This is the same as saying that if we divide a(x) by p(x) using long division from high school, then we get
the same remainder r(x) as when we divide b(x) by p(x). So to create an equivalence class, we could pick
a polynomial and take all other polynomials that differ from it by multiples of p(x). By multiple we now
mean polynomials of the form k(x)p(x) where k(x) is also a polynomial. For example, take a(x) = x6 + 1.
After long division with p(x) we see that

x6 + 1︸ ︷︷ ︸
a(x)

= (x+ 20)︸ ︷︷ ︸
k(x)

(x5 − 20x4 + 8x2 − 10)︸ ︷︷ ︸
p(x)

+ 400x4 − 8x3 − 160x2 + 10x+ 201︸ ︷︷ ︸
r(x)

.

Therefore, x6 + 1 ≡ 400x4− 8x3− 160x2 + 10x+ 201 mod p(x) since both x6 + 1 and its remainder 400x4−
8x3 − 160x2 + 10x + 201 have the same remainder after division by p(x). Any polynomial of the form
(x6 + 1) + k(x)p(x) is equivalent to x6 + 1.

A natural representative for any equivalence class is the common remainder r(x) of all elements in the
class after division by p(x). We write [r(x)] for the class represented by r(x). Let R[x]/(p(x)) be the
set of all equivalence classes, each represented by a possible remainder after division by p(x). The set of
equivalence classes, R[x]/(p(x)), is called the quotient of R[x] by p(x). Each equivalence class has infinitely
many polynomials in it, just like an equivalence class mod 5 had infinitely many integers in it. In the case of
integers mod 5 what happened is that all of Z got partitioned into 5 sets depending on what the remainder
on division by 5 was. The same is happening here — all of R[x] is getting partitioned into infinite sets of
polynomials that have the same remainder on division by p(x).

How many equivalence classes are there? Equivalently, how many different remainders are there after
division by our given p(x)? Note that any polynomial of degree at most 4 cannot be divided by p(x) or
equivalently, any polynomial in R[x]≤4 is its own remainder when you divide it by p(x) and so all of R[x]≤4

are remainders. Already we have infinitely many remainders. Can two of them be in the same equivalence
class? If a(x) and b(x) are two different polynomials in R[x]≤4, then their difference is also in R[x]≤4 and so
the difference cannot be a multiple of p(x). This means that a(x) and b(x) belong to different equivalence
classes mod p(x). How about a polynomial of degree 5 or more? Such a polynomial can be divided by
p(x) and the remainder will be a polynomial in R[x]≤4. We conclude that the elements of R[x]≤4 represent
the different equivalence classes mod p(x). Since R[x]≤4 has infinitely many elements, there are infinitely
many equivalence classes of R[x] mod p(x). Each element r(x) ∈ R[x]≤4 gives rise to the equivalence class
[r(x)] ∈ R[x]/(p(x)) and vice versa. Therefore, there is a bijection between R[x]/(p(x)) and R[x]≤4 by
identifying [r(x)] with r(x).

Recall that if r1(x), r2(x) ∈ R[x]≤4, then their sum r1(x) + r2(x) is also in R[x]≤4. Does the same rule
work in R[x]/(p(x))? i.e., is [r1(x)] + [r2(x)] = [r1(x) + r2(x)]? For this to be true, we would need that
when we add two polynomials f1(x) ∈ [r1(x)] (which means that remainder of f1(x) when divided by p(x)
is r1(x)) and f2(x) ∈ [r2(x)] (which means that remainder of f2(x) when divided by p(x) is r2(x)), the sum

69

polynomial f1(x) + f2(x) will have remainder r1(x) + r2(x) after division by p(x). Suppose f1(x) ∈ [r1(x)]
and f2(x) ∈ [r2(x)]. Then f1(x) = k1(x)p(x) + r1(x) and f2(x) = k2(x)p(x) + r2(x). This means that
f1(x) + f2(x) = (k1(x) + k2(x))p(x) + (r1(x) + r2(x)). Check that r1(x) + r2(x) cannot be divided by p(x)
since neither r1(x) nor r2(x) can be. Therefore, f1(x)+f2(x) belongs to the equivalence class [r1(x)+r2(x)].
So indeed, [r1(x)] + [r2(x)] = [r1(x) + r2(x)].

Let’s check scalar multiplication. Is it true that γ[r(x)] = [γr(x)]? Again if f(x) ∈ [r(x)] then f(x) =
k(x)p(x) + r(x). Therefore, γf(x) = γk(x)p(x) + γr(x). Since r(x) cannot be divided by p(x), γr(x) cannot
be either. Therefore, γf(x) ∈ [γr(x)], and we have that γ[r(x)] = [γr(x)].

These calculations show us that R[x]/(p(x)) is a vector space under the following rules of addition and
scalar multiplication which looks exactly like those in R[x]≤4.

• Addition in R[x]/(p(x)): if [r1(x)] and [r2(x)] are two equivalence classes mod p(x), then their sum
is the equivalence class [r1(x) + r2(x)] mod p(x).

• Scalar multiplication in R[x]/(p(x)): if [r(x)] is an equivalence class and γ ∈ R, then γ[r(x)] =
[γr(x)] mod p(x).

Recall that R[x]≤4 was a vector space of dimension 5 with basis B4 = {1, x, x2, x3, x4}. The quotient
space R[x]/(px)) is also a vector space of dimension 5 with basis {[1], [x], [x2], [x3], [x4]}. In general we have
the following.

Proposition 7.3.1. Given a polynomial p(x) of degree d,

1. The quotient space R[x]/(p(x)) is the set of all equivalence classes of polynomials mod p(x), and its
elements are represented by the remainders of polynomials in R[x] after division by p(x).

2. The space R[x]/(p(x)) is a vector space under the addition and scalar multiplication rules given above.

3. {[1], [x], [x2], . . . , [xd−1]} is a basis of R[x]/(p(x)). The elements of R[x]/(p(x)) are linear combinations
of [1], [x], [x2], . . . , [xd−1].

4. dim(R[x]/(p(x)) = d.

7.3.3 Proof of the algorithm for solving a polynomial equation

We’ll explain the proof on the example p(x) = x5−20x4 + 8x2−10. You can then extrapolate to the general
case. Recall that R[x]/(p(x)) consists of all equivalence classes of polynomials mod p(x). The class of a
polynomial f(x) is [r(x)] where r(x) is the remainder obtained when dividing f(x) by p(x). The quotient
space R[x]/(p(x)) is a vector space of dimension 5 with basis {[1], [x], [x2], [x3], [x4]}.

Consider the linear transformation T : R[x]/(p(x)) → R[x]/(p(x)) that sends [r(x)] 7→ [xr(x)]. For
example

T ([3x2 + 5x− 1]) = [x(3x2 + 5x− 1)] = [3x3 + 5x2 − x]

What happens if xr(x) is a polynomial of degree larger than 4? For example

T ([x4 + 5x− 1]) = [x(x4 + 5x− 1)] = [x5 + 5x2 − x]

Since x5 + 5x2 − x can be divided by p(x) giving the remainder 20x4 − 3x2 − x+ 10, we have that

[x5 + 5x2 − x] = [20x4 − 3x2 − x+ 10], and T ([x4 + 5x− 1]) = [20x4 − 3x2 − x+ 10].

You can check that T is a linear transformation by checking the following:

T ([r1(x)] + [r2(x)]) = T ([r1(x)]) + T ([r2(x)]) and T ([αr(x)]) = αT ([r(x)]).

70

To compute the matrix Ap of this linear transformation we need to first look at where T sends each
of the basis elements [1], [x], [x2], [x3], [x4] of R[x]/(p(x)). The columns of Ap are then the coordinates of
T ([1]), T ([x]), T ([x2]), T ([x3]) and T ([x4]) in the basis {[1], [x], [x2], [x3], [x4]}. Let’s do the calculation:

T ([1]) = [x] = 0 · [1] + 1 · [x] + 0 · [x2] + 0 · [x3] + 0 · [x4]

T ([x]) = [x2] = 0 · [1] + 0 · [x] + 1 · [x2] + 0 · [x3] + 0 · [x4]

T ([x2]) = [x3] = 0 · [1] + 0 · [x] + 0 · [x2] + 1 · [x3] + 0 · [x4]

T ([x3]) = [x4] = 0 · [1] + 0 · [x] + 0 · [x2] + 0 · [x3] + 1 · [x4]

T ([x4]) = [x5] = 10 · [1] + 0 · [x]− 8 · [x2] + 0 · [x3] + 20 · [x4] = [20x4 − 8x2 + 10]

Therefore, the matrix representing T in the basis {[1], [x], [x2], [x3], [x4]} is exactly

Ap =


0 0 0 0 10
1 0 0 0 0
0 1 0 0 −8
0 0 1 0 0
0 0 0 1 20


We are almost done. Suppose λ ∈ R and [r(x)] ∈ R[x]/(p(x)) is an eigenvalue/eigenvector pair of T ,

meaning T ([r(x)]) = λ[r(x)]. This means that [xr(x)] = T ([r(x)]) = λ[r(x)] = [λr(x)]. In other words,
(x− λ)r(x) is a multiple of p(x), or equivalently, there is a polynomial k(x) such that

k(x)p(x) = (x− λ)r(x).

This equality is in R[x]. Let’s look at the degrees on the left and right. On the right we have a polynomial
of degree at most 5 since the degree of r(x) is at most 4. Since p(x) already has degree 5, it must be that
k(x) is a real number. This means (x−λ)r(x) is a factorization of p(x) (up to some scalar multiple perhaps)
and one of its factors is (x − λ). Therefore, λ is a root of p(x). On the other hand, if λ is a root of p(x),
then p(x) = (x− λ)r(x) for some r(x) of degree 4 and [xr(x)] = [λr(x)] and [r(x)] is an eigenvector of λ for
the linear transformation T . Since Ap represents T , we conclude that the eigenvalues of Ap are exactly the
roots of p(x).

If you would like a proof in general, then here are the items you need to prove before invoking the
argument in the last paragraph above:

1. Suppose p(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 ∈ R[x]. We saw that R[x]/(p(x)) is a vector space.
Show that

T : R[x]/(p)→ R[x]/(p) s.t. [r(x)] 7→ [xr(x)]

is a linear transformation. That is, show that

(a) T ([r1(x)] + [r2(x)]) = T ([r1(x)]) + T ([r2(x)]), and

(b) for any real number γ, T ([γr(x)]) = γT ([r(x)]).

Note: You may verify this in multiple ways depending on the definition of R[x]/(p(x)) that you are
using. The two definitions that we have are

(a) All elements of R[x]/(p(x)) are given by the set of all (unique) remainders of polynomials in R[x]
after division by p(x), i.e. the element [r(x)] denotes the equivalence class of all polynomials that
have a remainder of r(x) when divided by p(x).

(b) All elements of R[x]/(p(x)) are of the form f(x) + (p(x)), where f(x) ∈ R[x] and (p(x)) denotes
the subspace of R[x] containing all (polynomial) multiples of p(x).

71

2. Find a basis for R[x]/(p(x)) and explain why it is a basis. What is dim
(
R[x]/(p(x))

)
?

3. The companion matrix Ap is the matrix representing the above linear transformation. Compute Ap
using the basis you computed in (c). Verify that it agrees with the matrix Ap in Step 2 of the algorithm.
(Hint: Recall how to compute the matrix of a linear map by looking at what the map does to a basis
of the domain vector space.)

72

Chapter 8

Singular Value Decomposition

The course thus far was focused on eigenvalues and eigenvectors and their applications. This is a theory that
only applies to square matrices – it was necessary that the domain and codomain of the linear transformation
represented by the matrix were the same so that we could understand when the action of the matrix on
a vector was simply scaling. In the presence of a full eigenbasis, the matrix can be diagonalized and
diagonalization has many useful consequences. The spectral theorem for symmetric matrices says that
all symmetric matrices can be diagonalized, and that the diagonalization is special in the sense of being
orthonormal.

We now move on to general (rectangular) matrices and see that every matrix admits an important fac-
torization called a singular value decomposition (SVD) which generalizes diagonalization for square matrices.
We will study the structure and geometry of this decomposition, followed by glimpses of its numerous ap-
plications. While diagonalization of a square matrix was very useful in applications involving powers of the
matrix, we will see that the SVD offers fundamental insight into the matrix itself.

8.1 Structure of the SVD

Theorem 8.1.1. Any matrix A ∈ Rm×n with rank(A) = r, admits a factorization of the form

A = UΣV >

called a singular value decomposition (SVD). The matrices U,Σ and V have the following properties:

• U =
[
u1 · · · ur ur+1 · · · um

]
∈ Rm×m is orthonormal, i.e., UU> = U>U = Im. The columns

u1, . . . ,ur form an orthonormal basis for Col(A) and ur+1, . . . ,um form an orthonormal basis for
Null(A>). Recall that Col(A) and Null(A>) are orthogonal complements. The vectors ui are the left
singular vectors of A.

• V =
[
v1 · · · vr vr+1 · · · vn

]
∈ Rn×n is also orthonormal, i.e., V V > = V >V = In. The

columns v1, . . . , vr form an orthonormal basis for Row(A) and vr+1, · · · , vn form an orthonormal
basis for Null(A). Recall that Row(A) and Null(A) are orthogonal complements. The vectors vi are
the right singular vectors of A.

73

• Σ ∈ Rm×n is a nonnegative matrix of the same shape as A and non-zero entries only on the diagonal:

Σ =



σ1

. . .

σr
0

. . .

0


Its first r diagonal entries are positive and arranged in non-increasing order, i.e., σ1 ≥ σ2 ≥ · · ·σr > 0.
These positive entries are the singular values of A.

The SVD can be summarized as follows:

A =

u1 · · · ur︸ ︷︷ ︸
Col(A)

ur+1 · · · um︸ ︷︷ ︸
Null(A>)


︸ ︷︷ ︸

m×m



σ1

. . .

σr
0

. . .

0


︸ ︷︷ ︸

m×n



v>1
...

v>r

Row(A)

v>r+1
...

v>n

Null(A)


︸ ︷︷ ︸

n×n

We will not prove the above theorem in this course. Instead we will focus on what the SVD means and
how to use it. Let’s first see some examples.

Example 8.1.2. Consider the rank two matrix

A =

[
3 0
4 5

]
.

Its singular value decomposition is:[
3 0
4 5

]
=

1√
10

[
1 −3
3 1

]
︸ ︷︷ ︸

U

[√
45 0

0
√

5

]
︸ ︷︷ ︸

Σ

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
︸ ︷︷ ︸

V >

.

Check all the claims in the theorem.

Example 8.1.3. We now use Julia to compute the SVD of the following 3× 3 matrix whose rank is 2:

B =

 1 1 1
−1 0 2
0 1 3


julia> B = [1 1 1; -1 0 2; 0 1 3]

317Array{Int64,2}:

1 1 1

-1 0 2

0 1 3

julia> svd(B)

74

SVD{Float64,Float64,Array{Float64,2}}

U factor:

317Array{Float64,2}:

-0.30519 0.757315 -0.57735

-0.503259 -0.64296 -0.57735

-0.808449 0.114355 0.57735

singular values:

3-element Array{Float64,1}:

3.904484344750072

1.6598198702273692

-0.0

Vt factor:

317Array{Float64,2}:

0.0507284 -0.285221 -0.957119

0.84363 0.525159 -0.111784

0.534522 -0.801784 0.267261

Truncating the above numbers at 5 decimal places, the singular value decompostion of B is 1 1 1
−1 0 2
0 1 3

 =

−0.30519 0.75731 −0.57735
−0.50325 −0.64296 −0.57735
−0.80844 0.11435 0.57735

3.90448 0
0 1.65981 0
0 0 0

0.05072 −0.28522 −0.95711
0.84363 0.52515 −0.11178
0.53452 −0.80178 0.26726


Notice that B has only two singular values and rank(B) = 2.

We now make sense of the components of the SVD. Suppose A = UΣV > as in Theorem 8.1.1. Consider
the matrix A>A ∈ Rn×n which is symmetric (in fact positive semidefinite). Check that

A>A = V Σ> U>U︸ ︷︷ ︸
Im

ΣV > = V Σ>ΣV >

and

Σ>Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

n

 ∈ Rn×n

Since V is orthonormal and Σ>Σ is diagonal, it must be that V Σ>ΣV > is an orthonormal diagonalization
of A>A. This allows us to make the following observations:

1. σ2
1 , . . . , σ

2
n are the eigenvalues of A>A in non-increasing order. They are indeed nonnegative since A>A

is PSD. Since σi = 0 if and only if i = r+ 1, . . . , n, the eigenvalue 0 of A>A has arithmetic, and hence
also geometric, multiplicity n− r. This means that rank(A>A) = rank(A) = r.

2. The columns of V consist of n orthonormal eigenvectors of A>A, and A>Avi = σ2
i vi for i = 1, . . . , n.

In particular, A>Avi = 0 for all i = r+ 1, . . . , n and hence vr+1, . . . ,vn form an orthonormal basis for
Null(A>A). If Ax = 0 then A>Ax = 0 and so Null(A) ⊆ Null(A>A). But since rank(A>A) = rank(A),
we have that Null(A) = Null(A>A). Therefore, vr+1, . . . ,vn form an orthonormal basis for Null(A).
Since the entire collection v1, . . . ,vn is orthonormal, v1, . . . ,vr lives in Row(A) = Null(A)⊥. Moreover,
v1, . . . ,vr forms an orthonormal basis for Row(A).

75

We summarize the main findings in a lemma.

Lemma 8.1.4. Suppose A ∈ Rm×n and rank(A) = r.

1. The singular values of A are the positive square roots of the r positive eigenvalues of A>A.

2. The right singular vectors of A are an orthonormal basis of eigenvectors of A>A. The first r of
them form an orthonormal basis of Row(A) and the last n − r of them form an orthonormal basis of
Null(A).

Consider again the equation A = UΣV >. Multiplying both sides by V we get that

AV = UΣV >V = UΣ

since V >V = In. Next note that UΣ is equal to

[
u1 u2 · · · ur ur+1 · · · um

]


σ1

. . .

σr
0

. . .

0


=
[
σ1u1 σ2u2 · · · σrur 0 · · · 0

]

Therefore,
Avi = σiui ∀ i = 1, . . . , r and Avi = 0 ∀ i = r + 1, . . . , n

In other words, the first r left singular vectors of A are

ui =
Avi
σi

for all i = 1, . . . , r

Using this equation we can check that these first r ui’s are mutually orthogonal:

u>i uj =
(Avi
σi

)>(Avj
σj

)
=

v>i (A>Avj)

σiσj
=

v>i (σ2
jvj)

σiσj
=
σjv

>
i vj
σi

= 0

The last equality follows from the fact that the columns of V are mutually orthogonal. We can also see that
these first r ui’s are unit vectors:

||ui||2 = u>i uj =
(Avi
σi

)>(Avi
σi

)
=

v>i A
>Avi
σ2
i

= v>i vi = ||vi||2 = 1

hence ||ui|| = 1.
Since a matrix and its transpose have the same eigenvalues, the non-zero eigenvalues of AA> are also

σ2
1 , . . . , σ

2
r . Using the fact that Avi = σiui for i = 1, . . . , r, we get that

AA>ui = AA>
(Avi
σi

)
=
A
(
A>Avi

)
σi

=
Aσ2

i vi
σi

= σiAvi = σ2
i ui

and hence the first r left singular vectors ui are eigenvectors of AA> with eigenvalues σ2
i .

The last m− r singular vectors ur+1, . . . ,um are chosen to be an orthonormal basis of Null(A>). In fact,
if we had done the above calculation starting with the PSD matrix AA> instead of A>A. Then by the exact
same reasoning as before we would get the following results:

76

Lemma 8.1.5. Suppose A ∈ Rm×n and rank(A) = r.

1. The singular values of A are the positive square roots of the r positive eigenvalues of AA>.

2. The left singular vectors of A are an orthonormal basis of eigenvectors of AA>. The first r of
them form an orthonormal basis of Col(A) and the last m − r of them form an orthonormal basis of
Null(A>).

We have now seen that the singular values of A are square roots of the non-zero eigenvalues of both A>A
and AA>. If A is an m × n matrix, with m 6= n, then A>A and AA> have different sizes, hence different
numbers of eigenvalues. This poses potential confusion, but we note that they both have the same number
of non-zero eigenvalues equal to rank(A). There will potentially be a different multiplicity of 0 eigenvalues
for A>A and AA>, but this does not pose any problems to the mechanics of the SVD.

The above discussion allows us to compute an SVD as we illustrate below.

Example 8.1.6. Consider again the rank 2 matrix

A =

[
3 0
4 5

]
We first compute the singular values and right singular vectors:

A>A =

[
25 20
20 25

]
with λ1 = 45 = σ2

1 , λ2 = 5 = σ2
2 and v1 =

1√
2

[
1
1

]
,v2 =

1√
2

[
−1
1

]
This implies that

V =
1√
2

[
1 −1
1 1

]
and Σ =

[√
45 0

0
√

5

]
We now use the equation Avi = σiui to find the ui. We have

Av1 =

[
3 0
4 5

] [
1/
√

2

1/
√

2

]
=

[
3/
√

2

9/
√

2

]
=

3√
2

[
1
3

]
=
√

45
1√
10

[
1
3

]
so u1 = 1√

10

[
1
3

]
.

Av2 =

[
3 0
4 5

] [
−1/
√

2

1/
√

2

]
=

[
−3/
√

2

1/
√

2

]
=
√

5
1√
10

[
−3
1

]
so u2 = 1√

10

[
−3
1

]
. It is important to note that since rank(A) = 2 we did not have to compute any vectors

from Null(A) or Null(A>). In more general scenarios, bases for these subspaces will have to be computed
and normalized in order to obtain the matrices V and U .

We now can conclude that

U =
1√
10

[
1 −3
3 1

]
and the singular value decomposition of A is

A =

[
3 0
4 5

]
=

1√
10

[
1 −3
3 1

] [√
45 0

0
√

5

] [
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
.

In practice one usually finds the rank of a matrix by computing the SVD.

1. Compute the singular value decomposition (in Julia).

2. If some singular values are VERY close to 0, then they are 0 (this happens because of rounding errors
in the computer).

3. rank(A) = the number of nonzero singular values of A.

77

8.2 The Reduced SVD

Let us look again at the SVD of A ∈ Rm×n and see what parts of the decomposition really matter:

A =
[
u1 · · · ur | ur+1 · · · um

]


σ1

. . .

σr
0

. . .

0





v1

...
vr

vr+1

...
vn



=
[
σ1u1 · · · σrur | 0 · · · 0

]


v1

...
vr

vr+1

...
vn


=
[
σ1u1 · · · σrur

] v1

...
vr



=
[
u1 · · · ur

]

σ1 0 · · · 0
0 σ2 · · · 0

. . . 0
· · · σr


v1

...
vr


Definition 8.2.1. The reduced singular value decomposition of A ∈ Rm×n, rank(A) = r is the
truncated factorization

A =
[
u1 · · · ur

]︸ ︷︷ ︸
m×r

σ1

. . .

σr


︸ ︷︷ ︸

r×r

[
v1 · · · vr

]>︸ ︷︷ ︸
r×n

= Û Σ̂V̂ >.

Note that in contrast to the (full) singular value decomposition, the reduced version has Σ̂ as a square
diagonal matrix and Û and V̂ as rectangular matrices in general.

Example 8.2.2. Let A be the following matrix

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


The only eigenvalue of A is 0 with AM(0) = 4 and GM(0) = 1. Moreover, rank(A) = 3 and A is not
invertible. We compute that

A>A =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9


78

with eigenvalues 0, 1, 4, 9 with and hence σ1 = 3, σ2 = 2, σ3 = 1, and σ4 = 0. The respective eigenvectors of
A>A are

v1 =


0
0
0
1

 ,v2 =


0
0
1
0

 ,v3 =


0
1
0
0

 ,v4 =


1
0
0
0


and so

V > =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
Next, we use the fact that Avi = σiui for i = 1, 2, 3 to find the first three columns of U . They are

u1 =


0
0
1
0

 ,u2 =


0
1
0
0

 , and u3 =


1
0
0
0

. The last step is to find the one orthonormal basis vector for Null(A>),

which by inspection is u4 =


0
0
0
1

. This rounds out the computation, giving us the matrix U and the hence

the full singular value decomposition of A is

A =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


︸ ︷︷ ︸

U


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

Σ


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

V >

The reduced singular value decomposition eliminated the 0 singular values and any singular vectors
coming from null spaces. The reduced SVD of A is

A =


0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >

Julia typically outputs the reduced SVD of a matrix as we see in the following example of a 3×5 matrix.

Example 8.2.3. julia> using LinearAlgebra

julia> A = [1 2 3 4 5; 1 17 20 0 3; 2 5 8 -1 -4]

317Array{Int64,2}:

1 2 3 4 5

1 17 20 0 3

2 5 8 -1 -4

79

julia> svd(A)

SVD{Float64,Float64,Array{Float64,2}}

U factor:

317Array{Float64,2}:

-0.14392 0.775189 0.615117

-0.935544 0.0960262 -0.339905

-0.322558 -0.624389 0.711404

singular values:

3-element Array{Float64,1}:

28.23022323551315

7.678580767418608

2.8449768841455674

Vt factor:

317Array{Float64,2}:

-0.0610899 -0.630703 -0.769498 -0.0089663 -0.0792058

-0.0491708 0.00792853 -0.0975465 0.485134 0.867553

0.596848 -0.348382 0.25957 0.614791 -0.277593

The above output is the reduced SVD of A. In this example, A ∈ R3×5. From the above SVD we see that
rank(A) = 3 since there are 3 singular values. Therefore we expect Û ∈ R3×3, Σ ∈ R3×3 and V̂ > ∈ R3×5 as
we see in the above output. In the full SVD Σ would have been 3× 5 and V > would have been 5× 5.

8.3 Three Immediate Consequences

The SVD has many remarkable consequences. Here we list three that are immediate.

8.3.1 Rank One Decomposition

Every matrix can be written in multiple ways as the sum of rank one matrices. For example, if A ∈ Rm×n
you can create m rank one matrices Ri by retaining row i of A and replacing all other entries of A by 0. Then
A = R1 + · · ·+Rm is a decomposition of A into rank one matrices. You could make a similar decomposition
by retaining columns of A or even just individual entries of A. It is not clear what such decompositions are
good for. The SVD creates a very special rank one decomposition that has numerous uses. The SVD allows
every matrix to be written as a positive linear combination of rank one matrices. The number of rank one
matrices in the decomposition is exactly the rank of the matrix.

Theorem 8.3.1. Let A ∈ Rm×n be a matrix of rank r and reduced SVD

A =
[
u1 · · · ur

]︸ ︷︷ ︸
m×r

σ1

. . .

σr


︸ ︷︷ ︸

r×r

[
v1 · · · vr

]>︸ ︷︷ ︸
r×n

.

Then A = σ1u1v
>
1 + σ2u2v

>
2 + · · · + σrurv

>
r which is a rank one decomposition of A into r rank one

matrices made up of outer products of singular vectors of A.

Example 8.3.2. Check that
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 = 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

+


1
0
0
0

 [0 1 0 0
]

80

The rank one decomposition of a matrix has numerous uses. We will see in class how to use it for image
compression.

8.3.2 Polar Decomposition

Let A ∈ Rn×n be a square matrix. Observe that we can use the SVD to write A as

A = UΣV > = UV >V ΣV > = (UV >)(V ΣV >).

Check that UV > is orthogonal and V ΣV > is PSD. We can conclude that any square matrix is the product
of an othogonal matrix and a PSD matrix. This factorization is a polar decomposition of A.

8.3.3 Change of Bases

The SVD of A ∈ Rm×n is like a diagonalization of A. It allows the action of A to be reduced to the action
of Σ if A = UΣV > is the SVD of A.

The linear transformation represented by A is:

A : Rn → Rm, x 7→ Ax

Suppose Ax = b. Then from the SVD we have that

b = Ax = UΣV >x = U(Σ(V >x)).

We analyze U(Σ(V >x)) step by step from the right to left. In the first step we compute V >x and
interpret it. Since V is orthonormal, its columns form an orthonormal basis of Rn. The coordinates of
x ∈ Rn in the basis {v1, . . . ,vn} is

y := V −1x = V >x.

Next, we apply Σ to V >x to get b′ := Σ(V >x) = Σy ∈ Rm. This action scales the first r entries of y
separately by the singular values σ1, . . . , σr and the remaining entries are 0. In particular this action is very
easy to understand.

Finally we need to understand b = UΣV >x = UΣy = Ub′. Since U is orthonormal, its columns form
an orthonormal basis of Rm. The coordinates of b = Ax in the U basis is

U>b = U>(UΣV >x) = ΣV >x = b′.

Said another way if we think of b′ = Σy as written in the U basis, then the coordinates of b′ in the standard
basis of Rm is b. The following theorem summarizes this discussion.

Theorem 8.3.3. Let A = UΣV > ∈ Rm×n be the SVD of A. If we use {v1, . . . , vn} and {u1, . . . ,um} as
orthonormal bases of the domain Rn and codomain Rm of A, respectively, then A behaves like the matrix Σ.

The action of A can be broken up into three pieces as in the following pictures:

x︸︷︷︸
(In standard basis of Rn)

V >−−→ y := V >x︸ ︷︷ ︸
(In V basis, still in Rn)

Σ−→ b′ := Σy = ΣV >x︸ ︷︷ ︸
(In U basis, now in Rm)

U−→ Ub′ = UΣV >x = b︸ ︷︷ ︸
(Back to standard basis, in Rm)

We conclude that after changing the basis of the domain Rn to the V -basis and the basis of the codomain
Rm to the U basis, the action of A is simply the action of the matrix Σ. Remember that the SVD exists
for all matrices. So this is a vast generalization of the result we saw in Chapter 1 that said that every
diagonalizable square matrix behaves like its eigenvalue matrix Λ with respect to an eigenbasis.

81

standard IR
" A

> 1pm standard

basis
basis

e, . . . - en X b = Ax 9, - - sem

^

VT / U
v

✓ basis Rn
E

s Rm U basis
'

{4 , . . . In} {Ui , - - sum}

y
:=VTx Ey - b

'

8.4 Geometry of the SVD

Next we look at the geometry of the SVD. The key property of a linear transformation that you have seen so
far is that it sends a plane (of any dimension) in the domain to a plane in the codomain of the transformation.
For example, a two-dimensional plane can go to another two-dimensional plane or a line or a point. In this
section we will look at what a linear transformation does to the unit sphere and we will see that all the
components of the SVD pop out from this action.

The sphere of radius 1 in Rn (called the unit sphere) is

Sn−1 = {x ∈ Rn : x2
1 + x2

2 + · · ·+ x2
n = 1}.

For example in R2, S1 = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1} is the unit circle and in R3, S2 = {(x1, x2, x3) ∈
R2 : x2

1 + x2
2 + x2

3 = 1} is what we think of normally as the sphere of radius 1.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 8.1: Unit circle in R2 and the unit sphere in R3

In R2 we are also familiar with an ellipse which has the equation

x2
1

a2
+
x2

2

b2
= 1

82

for some a, b > 0. The quantities a and b are the lengths of the semiaxes of this ellipse. The higher
dimensional analog of an ellipse is called a hyperellipse and has the equation

x2
1

a2
1

+
x2

2

a2
2

+ · · ·+ x2
n

a2
n

= 1

The numbers a1, . . . , an denote the lengths of the semiaxes of the hyperellipse.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 8.2: Eliipse in R2 with semiaxes of lengths 2 and 3 and hyperellipse in R3 with semiaxes of lengths
1, 2, 3.

Let’s look at the image of Sn−1 under the linear transformation represented by A ∈ Rm×n. The key facts
we will see are summarized in the following theorem. See Figures 8.3 and 8.4 for illustrations.

Theorem 8.4.1. Let A = UΣV > be the SVD of A ∈ Rm×n and let rank(A) = r. Then

1. The image of Sn−1 under A is a r-dimensional hyperellipse in Rm, which we denote as A(Sn−1).

2. The lengths of the semiaxes of the hyperellipse A(Sn−1) are the singular values σ1, . . . , σr of A. (In
particular they are positive numbers.)

3. The first r left singular vectors of A, u1, . . . ,ur, are the unit vectors along the semiaxes of A(Sn−1).

4. The first r right singular vectors of A, v1, . . . , vr, are the preimages in Sn−1 of the semiaxes, σ1u1, . . . , σrur,
of the hyperellipse. In other words, Avi = σiui for i = 1, . . . , r.

We now see why the above theorem is true. Recall that the SVD allows us to think of the action of
A = UΣV > as the composition of three linear transformations:

Rn −→ Rn −→ Rm −→ Rm
x 7→ V >x 7→ ΣV >x 7→ UΣV >x

The first and third transformations are given by orthonormal matrices V > and U . So let’s first look at what
an orthonormal matrix does to the sphere Sn−1.

Proposition 8.4.2. If Q ∈ Rn×n is an orthonormal matrix, then the linear transformation represented by
Q preserves dot products, and hence also angles between vectors, and lengths of vectors.

Proof. Suppose v,w ∈ Rn and Q ∈ Rn×n is an orthonormal matrix. Then

(Qv)>(Qw) = v>Q>Qw = v>Iw = v>w.

83

Gi'
7

o,
^

A 6% %
• > \
°

Gv
°

j

U2

sphere hyper ellipse

Figure 8.3: A sphere goes to a hyperellipse under the action of A.

In particular, Q preserves lengths of vectors since

||Qv||2 = (Qv)>(Qv) = v>v = ||v||2.

Since v>w = ‖v‖‖w‖ cos(θ) where θ is the angle between v and w, we also get that θ is still the angle
between Qv and Qw.

This property shows that an orthonormal matrix sends the unit sphere to itself, and an orthonormal
basis of Rn to another orthonormal basis of Rn.

Corollary 8.4.3. If Q ∈ Rn×n is an orthonormal matrix, then Q(Sn−1) = Sn−1. If {b1, . . . , bn} is an
orthonormal basis of Rn then so is {Qb1, . . . , Qbn}.

Recall that if Q ∈ Rn×n is orthonormal, then det(Q) = ±1. If det(Q) = 1 then Q is in fact a rotation
matrix. If det(Q) = −1 then it is sometimes a reflection, but the general interpretation is more complicated.
Check for instance that the matrix representing reflection across the x-axis in R2 is an orthonormal matrix
with determinant −1. For the purposes of intiution you can think of Q as a rotation matrix for what we are
going to do next, but this is not strictly correct.

Let’s now see what the three linear transformations given by the SVD of A are doing geometrically. We
will assume that m ≥ n. The discussion below is summarized in Figure 8.5.

• The first transformation is V > : Rn −→ Rn and V > is orthonormal. This map sends Sn−1 to itself,
i.e., V >Sn−1 = Sn−1. The standard basis {e1, . . . , en} in the codomain Rn came from the orthonormal
basis {v1, . . . ,vn} in Rn since vi is sent to V >vi = ei ∈ Rn by V >. A vector y in the codomain
came from x ∈ Rn such that y = V >x. This means that y gives the coordinates of x in the basis
{v1, . . . ,vn}.

• Next we have the linear transformation Σ : Rn → Rm which simply scales coordinates, namely

y = (y1, . . . , yn)> ∈ Rn 7→ Σy = (σ1y1, . . . , σryr, 0, . . . , 0)> ∈ Rm

In particular, ei ∈ Rn 7→ Σei = σie
′
i ∈ Rm where e′1, . . . , e

′
m are the standard basis vectors in Rm.

Therefore, each standard basis vector ei ∈ Rn for i = 1, . . . , r becomes the scaled standard basis
vector σie

′
i ∈ Rm, while the rest of the standard basis vectors in Rn get mapped to the origin in Rm.

Geometrically, this sends the sphere Sn−1 ⊂ Rn to the r-dimensional hyperellipse ΣV >Sn−1 ⊂ Rm
in which the first r radii e1, . . . , er of the sphere Sn−1 map to the semiaxes σ1e

′
1, . . . , σre

′
r of the r-

dimensional hyperellipse, and the rest of the radii ei, i = r+ 1, . . . , n, map to the origin. The semiaxes
of this hyperellipse are in the directions of the first r standard basis vectors of Rm.

84

6242 y
still ,

t

°

A
01

÷
.
.
.
.
.
- -

.
.

.

\
or qua ,..

-794

¥ '
- EEE
-

-tank A
=3 ! O

÷

Figure 8.4: A sphere goes to hyperellipses of different dimension depending on the rank of A.

• Finally we apply the orthonormal matrix U ∈ Rm×m to the r-dimensional hyperellipse ΣV >Sn−1 ⊂ Rm.
This sends a semiaxis σie

′
i to U(σie

′
i) = σiUei = σiui ∈ Rm. Since angles and lengths are preserved

by an orthonormal transformation, the whole hyperellipse ΣV >Sn−1 maps to another r-dimensional
hyperellipse UΣV >Sn−1 whose semiaxes are σ1u1, . . . , σrur. If U were are rotation, then we would be
simply rotating ΣV >Sn−1 so that the unit vector e1, . . . , er ∈ Rm rotate to u1, . . . ,ur ∈ Rm. A formal
proof of why a hyperellipse maps to a hyperellipse under an orthonormal transformation is omitted.

8.5 Application: Low Rank Approximations of a Matrix

Just like we have the 2-norm of a vector x ∈ Rn defined as
√
x2

1 + · · ·+ x2
n, matrices have a 2-norm. In fact,

there are many norms for both vectors and matrices, but in this class we only consider the 2-norm.

Definition 8.5.1. The 2- norm of A = (aij) ∈ Rm×n, also known as the spectral norm of A, is

||A||2 = max
x6=0

{ ||Ax||2
||x||2

}
.

Since for any real number α, ||αx|| = |α|||x||, we get that

||Aαx||2
||αx||2

=
|α|||Ax||2
|α|||x||2

=
||Ax||2
||x||2

.

This means that we can always take x to have unit length and define

||A||2 = max
||x||2=1

{
||Ax||2

}
.

In words, the 2-norm of the matrix A is the maximum stretch that A applies to a unit vector.
From the geometry of the SVD we see that the the maximum stretch A applies to a unit vector in Rn is

exactly σ1, the largest singular value of A:
‖A‖2 = σ1

85

A
IR
"

> Rm
•
r y

O' qui 7
QU '

/ VT r

U
v

IR
"

E
s Rm

ez jeez
'

> e,
> me,

'

Figure 8.5: The SVD geometrically.

Recall that the SVD of A (with rank(A) = r) allows one to write A as a sum of r rank 1 matrices:

A =
[
u1 · · · ur

] σ1

. . .

σr


v>1

...
v>r

 = σ1u1v
>
1 + · · ·+ σrurv

>
r

This rank one decomposition allows us to find low rank approximations to A. A good approximation of A
must be a matrix that is “close” to A and we measure closeness with the matrix norm. In many applications,
especially in engineering, one needs to find a low rank matrix that is close to the matrix we have. We will
see some applications of this in a bit. How do we find the closest rank k matrix to A for some some k < r?

Definition 8.5.2. Let rank(A) = r. For k < r, define the rank k approximation to A as the kth partial
sum

Ak = σ1u1v
>
1 + · · ·σkukv>k =

k∑
i=1

σiuiv
>
i

Check for yourself that rank(Ak) = k. We now see that Ak is the “best” approximation of A by a matrix
of rank k.

Theorem 8.5.3. (Eckart-Young Theorem) The closest rank k matrix to A (in 2-norm) is the matrix

Ak =

k∑
i=1

σiuiv
>
i .

More formally, if B is any m× n matrix of rank k, then

||A−B||2 ≥ ||A−Ak|| = σk+1.

We do not prove this theorem in this course but it is easy to see that ||A−Ak||2 = σk+1.

A−Ak =

r∑
i=1

σiuiv
>
i −

k∑
i=1

σiuiv
>
i =

r∑
i=k+1

σiuiv
>
i =

[
uk+1 · · · ur

] σk+1

. . .

σr


v>k+1

...
v>r


86

This is the SVD of A−Ak and so ||A−Ak||2 is the largest singular value of this matrix, which is σk+1.

We illustrate the above results on Example 8.2.2 from before.

Example 8.5.4. Recall that

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 =


0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û


3 0 0
0 2 0
0 0 1
0 0 0


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >

= 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

+


1
0
0
0

 [0 1 0 0
]

Since the first column of A is 0 and the other columns are linearly independent, Col(A) is three-dimensional
and hence A sends R4 to R3. In particular, (x1, x2, x3, x4)> is sent by A to (x2, 2x3, 3x4, 0)>. Therefore, we
can draw the image of A in R3 by projecting onto the first three coordinates of a vector in R4.

By the Eckart-Young theorem, the closest rank 1 matrix to A is

A1 = 3


0
0
1
0

 [0 0 0 1
]

=


0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0


Since rank(A1) = 1, the image of the unit sphere in R4 under A1 is a line segment (1-dimensional hyperellipse)
with semiaxis 3(0, 0, 1, 0)>. Since we are projecting onto the first three coordinates, we can think of this as
the line segment in R3 with semiaxis 3e3.

-

-

;
.

.

.

-
-
-
"
"

"

t
. .

-

-

ii.
.

.

-

it

,

I
'

t
..

.
/

A, (s
'

) Aa (s
') Az(s

'

)

Figure 8.6: The low rank approximations of A build up the image hyperellipse of A one axis at a time from
the longest to the shortest.

The closest rank 2 matrix to A is

A2 = 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

=


0 0 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

87

This matrix sends the unit sphere in R4 to a 2-dimensional hyperellipse with semiaxes 3(0, 0, 1, 0)> and
2(0, 1, 0, 0)>. Again projecting onto the first three coordinates, this is an ellipse with semiaxes 3e3 and 2e2.

The full matrix A is a rank 3 linear transformation from R4 to R4 and the image of the unit sphere in R4

under A is the 3-dimensional hyperellipse with semiaxes 3(0, 0, 1, 0)>, 2(0, 1, 0, 0)> and (1, 0, 0, 0). Projecting
onto the first three coordinates we get the last picture in Figure 8.6.

Geometrically, note that as we take higher and higher rank approximations of A from the rank one
decomposition given by the SVD we are building up the image hyperellipse A(Sn−1) one axis at a time,
starting with the longest axis and working our way up in increasing order of axis length. We can also think
of this process as finding better and better approximations of the image hyperellipse by lower dimensional
ellipses.

8.6 Best Fit k-Planes

In linear regression we learned how to find the best fit line to a collection of points in R2 where by best fit
we meant a line that minimized the sum of squares of the vertical distances from the points to the line. In
this section we will see how the SVD can be used to find best fit planes to data points where now we will be
minimizing the sum of squares of perpendicular distances from the points to the plane.

Question 8.6.1. Suppose we have m data points a1, . . . ,am ∈ Rn. What is the “best fit k-dimensional
subspace” to these data points?

We will assume that the m data points are the rows of a matrix A ∈ Rm×n. When k = 1 we are looking
for the best fit line ` to the given data points, i.e., the line through the origin that minimizes the sum of
squared orthogonal distances of a1, . . . ,am to the line.

By Pythagorus’ Theorem, the squared distance of ai from ` is d2
i = ||ai||2 − ||pi||2, where pi = projlai

is the (orthogonal) projection of ai onto `. From this we can conclude that in order to minimize
∑
d2
i , we

need to maximize
∑
||pi||2, since the norms ||ai||2 are fixed.

Question 8.6.2. Which line through the origin maximizes the value
∑
||pi||2?

If v is a unit vector on the best fit line ` and θ is the angle between ai and v then

a>i v = ||ai||||v|| cos θ = ||ai|| cos θ

88

which shows that ‖pi‖ = |a>i v|, and ||pi||2 = |a>i v|2. Recalling that the ai were the rows of the matrix A,
we have

Av =

a>1
...

a>n

v =

a>1 v
...

a>nv


and hence,

m∑
i=1

||pi||2 = ||Av||2

This translates our original question to a new one.

Question 8.6.3. Which unit vector v ∈ Rn maximizes the value ||Av||2?

We just saw the answer to this question in the previous section. Recalling that

||A||2 = max
||x||2=1

{
||Ax||2

}
= σ1

and that the maximum is attained by the first right singular vector v1 of A, we conclude that v1 maximizes
||Av||2. We summarize our finding in the following proposition.

Proposition 8.6.4. If A =

a
>
1
...

a>m

 ∈ Rm×n, then the best fit line through the origin to the rows of A is

` = Span{v1}, where v1 is the first right singular vector of A.

Finding best fit planes to a1, . . . ,am proceeds similarly. We leave out the details of the proof, but state
the generalization of the calculation we just did.

Theorem 8.6.5. Let a1, . . . ,am ∈ Rn be the rows of the matrix A ∈ Rm×n and suppose rank(A) = r. For
1 ≤ k ≤ r, let Vk = Span{v1, . . . , vk} ⊆ Rn where vi denotes the ith right singular vector of A. Then the
best fit k-dimensional subspace to the rows of A is Vk. By best fit we mean the plane that minimizes the sum
of squares of orthogonal distances from the points to the plane.

By transposing A, we can obtain a similar theorem for the columns of A. Observe that if A = UΣV >

then A> = V Σ>U>. Since the rows of A> are the columns of A, we can directly apply the previous theorem
to conclude the following.

Theorem 8.6.6. Let Uk = Span{u1, . . . ,uk} ⊆ Rm where ui denotes the ith left singular vector of A. Then
the best fit k-subspace to the columns of A is Uk.

You should pause for a moment and let this sink it. We have seen many reasons why the singular value
decomposition of A is important. The singular values alone tell us a tremendous amount of information, but
we now have more. Mainly that the left and right singular vectors give the best fit k-dimensional subspaces
to the columns (resp. rows) of A. Before we illustrate these results on Example 8.2.2, we state another
important result that links the best fit k-planes to the rank one decomposition of A from the SVD.

Proposition 8.6.7. Suppose A =
∑r
i=1 σiuiv

>
i and Ak =

∑k
i=1 σiuiv

>
i . The rows of Ak are the projections

of the rows of A onto the subspace Vk = Span{v1, . . . , vk}.

Proof. Let a be a row of A. Since the right singular vectors v1, . . . ,vk form an orthonormal basis for Vk,
from homework we know that the projection of a onto Vk is

projVk(a) = v1v
>
1 a + v2v

>
2 a + · · ·+ vkv

>
k a

89

Written as a row vector,

projVk(a)> = (a>v1)v>1 + (a>v2)v>2 + · · ·+ (a>vk)v>k .

Therefore, the matrix whose rows are the projections of the rows of A (the ai) onto Vk is:
∑k
i=1(a>1 vi)v

>
i∑k

i=1(a>2 vi)v
>
i

...∑k
i=1(a>mvi)v

>
i

 =

k∑
i=1

(
Avi

)
v>i =

k∑
i=1

(
σiui

)
v>i =

k∑
i=1

σiuiv
>
i = Ak.

Example 8.6.8. Recall that

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 =


0 0 1
0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

Û

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

Σ̂

0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸

ˆV >

= 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

+


1
0
0
0

 [0 1 0 0
]

A
X, = O

•• az
-

- 18g)
Vi- span { (&))

>

•

g= (%)
Ay

•• • 7
a, = (9g)

Figure 8.7: V1 is the best fit line to the rows of A.

All rows of A have first coordinate 0 and so we can draw them in R3 by dropping the first coordinate.
By the above theorem, the best fit line, plane and 3-dimensional plane to the 4 data points are:

• V1 = Span{(0, 0, 0, 1)}

90

or
X, = O

•• as
-

- (8g) "

.

" ""

=/!)

Figure 8.8: V2 is the best fit plane to the rows of A.

• V2 = Span{(0, 0, 0, 1), (0, 0, 1, 0)}

• V3 = Span{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)}

The matrix

A1 = σ1u1v
>
1 = 3


0
0
1
0

 [0 0 0 1
]

=


0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0


Check that the projections of a1, . . . ,a4 on V1 are exactly the rows of A1. Indeed, a1 and a2 project to 0,
whereas a3,a4 project to themselves because they are already on V1. See Figure 8.7.

The matrix

A2 = σ1u1v
>
1 + σ2u2v

>
2 = 3


0
0
1
0

 [0 0 0 1
]

+ 2


0
1
0
0

 [0 0 1 0
]

=


0 0 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
Projections of the rows of A on V2 are the following: a1 projects to 0, a2,a3,a4 project to themselves because
they lie in V2. Again, the rows of A2 are the projections of a1,a2,a3,a4 onto V2. See Figure 8.8.

8.7 Application: Principal Component Analysis (PCA)

The theory we have developed in the last section is the basis of PCA, which identifies the principal directions
of variance of data. Suppose our data consists of points a1, . . . ,an ∈ Rm and A0 ∈ Rm×n is the matrix whose
columns are a1, . . . ,an. The idea of PCA is to project this data into a lower dimensional space (dimension
reduction) while capturing as much of the variation present in the data. The principal components are
uncorrelated, and ordered so that the first few retain most of the variation present in the original data set.

The underlying method is to find the best-fit planes to the data as we have done in the previous section.
Recall that if the data is sitting in the columns of a matrix, then the best-fit k-plane to the data is Uk =
Span{u1, . . . ,uk} where u1, . . . ,um are the left singular vectors of the matrix.

91

Since the best-fit planes all pass through the origin in Rm, it makes sense to first center the data so that
its mean is at the origin.

Step 1: Let A ∈ Rm×n be the matrix obtained by subtracting the mean of each row of A0 from all
components of that row. Then A1 = 0 which means that the average of the columns of A (data point) is
the origin.

Step 2: Use the SVD of A to find u1, . . . ,ur where r = rank(A). The vectors u1,u2, . . . ,ur are called the
principal components of the data points. They capture orthogonal directions in which the data varies
starting from the most prominent direction of variance, then the next, the next and so on.

Recall the following results as well:

• Uk = Span{u1, . . . ,uk} is the best fit k-plane to the columns of A.

• The columns of Ak are the projections of the the data onto Uk.

In statistics, u1, . . . ,um are computed as the eigenvectors of AA>

n−1 which is called the sample covariance
matrix. We won’t get into the statistics behind PCA in this class, so we’ll just focus on the SVD of A as we
have learned in this class. Note that if m is small compared to n, then AA> is a small matrix, of size m×m.

Example 8.7.1. (from Strang Section 7.3) Suppose we have math scores and history scores of six students.
Our data points are of the form (xi, yi) where xi denotes the math score of student i and yi denotes the
history score of student i. Centering our data we get

A =

[
3 −4 7 1 −4 −3
7 −6 8 −1 −1 −7

]
julia> using LinearAlgebra

julia> A = [3 -4 7 1 -4 -3; 7 -6 8 -1 -1 -7]

217Array{Int64,2}:

3 -4 7 1 -4 -3

7 -6 8 -1 -1 -7

julia> svd(A)

SVD{Float64,Float64,Array{Float64,2}}

U factor:

217Array{Float64,2}:

-0.560629 -0.828067

-0.828067 0.560629

singular values:

2-element Array{Float64,1}:

16.870954927874198

3.9205713641811695

Vt factor:

217Array{Float64,2}:

-0.443268 0.427416 -0.625272 0.015852 0.182004 0.443268

0.367344 -0.0131368 -0.334502 -0.354208 0.701847 -0.367344

This tells us that the principal components are:

u1 =

(
−0.5606
−0.8280

)
, u2 =

(
−0.8280
0.5606

)
and the maximum variation of the data is along U1 = Span{u1} and the next most variation in a direction
orthogonal to U1 is along Span{u2}.

Let’s check if we would have gotten the same answer if we had worked with the sample covariance matrix.

92

julia> transpose(A)

617Transpose{Int64,Array{Int64,2}}:

3 7

-4 -6

7 8

1 -1

-4 -1

-3 -7

julia> B = A*transpose(A)

217Array{Int64,2}:

100 125

125 200

julia> eigvals(B)

2-element Array{Float64,1}:

15.370879821637395

284.62912017836265

julia> eigvecs(B)

217Array{Float64,2}:

-0.828067 0.560629

0.560629 0.828067

julia> C = B/5

217Array{Float64,2}:

20.0 25.0

25.0 40.0

julia> eigvals(C)

2-element Array{Float64,1}:

3.0741759643274786

56.92582403567252

julia> eigvecs(C)

217Array{Float64,2}:

-0.828067 0.560629

0.560629 0.828067

In the above calculations, note that the eigenvectors of AA> and AA>

5 are the same and they are precisely
u1 and u2. The order is flipped since the order in which the eigenvalues are written in Julia is from the
smallest to largest.

See the video on PCA by Steve Brunton to see some large data sets in action: https://www.youtube.

com/watch?v=VqjJ5YYt78Y. He also explains all the normalization that is done in statistics.
Here is another example that illustrates the heart of PCA. Suppose we look at car sales in the United

States and have a data set showing the preferences of n customers for m types of cars. The data is arranged
as the columns of a matrix A where columns represent people and rows represent cars. Column j tells you
the probability that customer j will buy car i. We expect car sales to be driven by a few dominant factors
that are independent like age, income, family size etc, say r factors. For each factor we have a vector that
tells you the preference for a type of car when only that factor is taken into account. These vectors form
the columns of a matrix U of size m× r. The SVD writes A as A = U(ΣV >) where the jth column of ΣV >

gives the weights for each factor for customer j. See Figure 8.9 for a visualization of these matrices.

93

https://www.youtube.com/watch?v=VqjJ5YYt78Y
https://www.youtube.com/watch?v=VqjJ5YYt78Y

-

- prob that customer j buy ' wcaargiwseusiomerj
-

-
- - -

has for eager father
car 1 Aaj Carl °

.

car 2 Car 2 o e

. aaj
.

. : }f8Ii
: .

cari a

:j
= cari : L : u

'

.
I 2 . - - - - - -

n

! . :
a #
@

car m
- amj -

arm
,

a j
customers

1 2 3 4 . - -j - - i - - n l - - - k . . - re

- -

factorscustomers €
,

gene prob of buying Cariband on just theKth factor

Figure 8.9: The SVD identifies the important (independent) factors that determine the data.

The Netflix problem falls in this general class of problems. It’s more complicated than what we have seen
so far, but has the same spirit. See the following video by Steve Brunton https://www.youtube.com/watch?

v=sooj-_bXWgk. There are many many other examples of PCA. See some of the other videos by Brunton
https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv

94

https://www.youtube.com/watch?v=sooj-_bXWgk
https://www.youtube.com/watch?v=sooj-_bXWgk
https://www.youtube.com/watch?v=gXbThCXjZFM&list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv

Chapter 9

Error Correcting Codes

In this chapter we will see a new type of vector space, namely a vector space over a finite field. Such vector
spaces lead to important applications in areas such as coding theory.

9.1 Vector spaces over finite fields

Recall that Z5 = {0, 1, 2, 3, 4}, the set of integers mod 5, is the set of all remainders obtained from all integers
after division by 5. All integers have a representative in Z5, namely the remainder you get when you divide
the integer by 5. By this definition, 0 represents all integer multiples of 5. We say that two integers a and b
are congruent mod 5 if they have the same remainder on division by 5 or equivalently, a− b is a multiple of
5. For example, 1 and 6 are congruent mod 5, written as 1 ≡ 6 mod 5. Similarly you could have Zk for any
integer k. Note that Z1 = Z.

In this chapter we focus on Z2 = {0, 1}, the integers mod 2, or binary numbers. How do we add and
multiply in Z2? The only thing to remember is that we should do all operations as we normally would but
every time you get a number different from 0 or 1 you should replace it by its representative in Z2.

Addition:
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

The reason why 1 + 1 = 0 is because normally 1 + 1 = 2 and the representative of 2 in Z2 is 0.
Multiplication: We can only use elements from Z2 and we should stay in Z2:

0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1

The multiplicative inverse of 1 is 1 since 1 · 1 = 1.
All other rules of addition and multiplication are the same as in R: addition and multiplication are both

commutative and associative and so on.
A set that has all these properties is called a field. We are being vague about “all these properties”. The

set of real numbers R, the set of rational numbers Q and the set of complex numbers C are all fields. Z2 is
called the finite field of two elements. In general, for any prime number p, Zp is the finite field of p elements.
In other words Zp has the properties of R and C. The word “finite” is used since the field Zp has only finitely
many (i.e., p) elements.

Just as with R and C we can have vector spaces over Z2. By this we mean sets that satisfy all the rules
of being a vector space and where linear combinations have coefficients from Z2 and scalar multiplication
only uses elements of Z2.

Example 9.1.1. What is (Z2)3? Remember R3 is the set of all triples of real numbers (a, b, c). So (Z2)3

must be all triples of elements from Z2.

(Z2)3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

95

Note that these are precisely the corners of a special cube of side length 1 (called the unit cube) in R3.
Check that (Z2)3 is a vector space over Z2 just like R3 is a vector space over R:

If a,b ∈ (Z2)3 and α, β ∈ Z2 then αa + βb ∈ (Z2)3.

For example, if a = (1, 0, 0),b = (1, 0, 1), α = 0, β = 1 then 0(1, 0, 0) + 1(1, 0, 1) = (0, 0, 0) + (1, 0, 1) =
(1, 0, 1) which is still in (Z2)3. Try a few more examples.

(Z2)4 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), . . . , (1, 1, 0, 0), . . . , (0, 1, 1, 1), (1, 1, 1, 1)} which are precisely all
the corners of the unit cube in R4. It has 24 = 16 elements. This is again a vector space over Z2.

In general (Z2)n is a vector space over Z2 with 2n elements.

Exercise 9.1.2. What is a basis for (Z2)3? In general, (Z2)n? What are the dimensions of these vector
spaces?

Since (Z2)n is a vector space, it can have subspaces. These would be subsets of (Z2)n that themselves
form a vector space over Z2. We will see subspaces in the next section.

9.2 Hamming Code

The following material is taken from the book Thirty Three Miniatures by J. Matouşek.
Suppose we wish to transmit a message as a string v of 0s and 1s. The transmission channel could

introduce errors. For example you might send the string v = 1011 but the string your buddy receives is
w = 1001, which has one error. We assume that the probability of many errors is small, say the probability
of two errors is very small, but there is a chance of one error. In general, the probability of k errors might
be very small, but there is a significant chance of k − 1 or less errors. Error correcting codes will pad your
original message with extra digits that can help you correct errors. Below we see how this works.

Example 9.2.1. Suppose the probability of two errors is very small but one error is quite possible. Then if
we wish to send the string 1011, we could make the rule that we will triple every digit and send 111000111111.
Then if your buddy receives 110000111111, they will know that there is an error in the first digit and the
message really is 1011. Of course there might be more errors but since the chance of two errors is small, this
assessment seems reasonable. The question is, do you really need to triple every digit? Can you be more
economical?

One of the best known error correcting codes is the Hamming code which was discovered in the 1950s.

Example 9.2.2. Here is what a Hamming code would do with a string v = abcd where a, b, c, d ∈ {0, 1}. It
would send w = abcdefg where

e = a+ b+ c mod 2, f = a+ b+ d mod 2, g = a+ c+ d mod 2

So if v = 1011, the code would send w = 1011001. We will see that this can correct one error.

Now here is where Z2 and (Z2)n come into the picture. Recall that the elements of (Z2)n are precisely
all strings of length n from the alphabet {0, 1} = Z2. An element of (Z2)n is called a string or word of length
n (or with n-bits) from the alphabet Z2.

Definition 9.2.3. 1. A code of length n is any subset of (Z2)n.

2. A linear code of length n is a subspace of (Z2)n.

Example 9.2.4. Consider all 7-bit strings that the Hamming code in the previous example will produce
starting with all 4-bit strings:

C = {0000000, 0001011, 0010101, 0011110, 0100110, 0101101, 0110011, 0111000, 1000111,

1001100, 1010010, 1011001, 1100001, 1101010, 1110100, 1111111}
C is a code since it is a subset of (Z2)7.

96

We will now see that the code C is in fact a linear code. To prove this we need to argue that C is a
subspace of (Z2)7. How do we prove such a thing?

Remember that there are two ways of representing a subspace. We can either find a generating set (or
basis) or write the set as the solutions to a finite number of linear equations. All this also works over Z2 as
long as all calculations are done mod 2. Let’s look at these methods for a subspace C of (Z2)n.

1. By basis: Suppose G is a k × n matrix whose rows from a basis of C. Then all elements of C are
linear combinations of the rows of G and so we can write C as

C = {y>G : y ∈ (Z2)k}

We call G a generator matrix of C.

Example 9.2.5. In our example C, we can take

G =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


Check that every one of the 16 elements in C is a linear combination of the four rows of G and there
are no more linear combinations. This is one way to see that C is a linear code but this is laborious.

2. By linear equations: Recall that the Hamming code satisfies the linear equations:

a+ b+ c ≡ e mod 2, a+ b+ d ≡ f mod 2, a+ c+ d ≡ g mod 2

If we bring all variables to the left then these equations read:

a+ b+ c− e ≡ 0 mod 2, a+ b+ d− f ≡ 0 mod 2, a+ c+ d− g ≡ 0 mod 2

However, in Z2, the negative of an element is itself. Therefore, −e = e,−f = f,−g = g and the
equations are

a+ b+ c+ e ≡ 0 mod 2, a+ b+ d+ f ≡ 0 mod 2, a+ c+ d+ g ≡ 0 mod 2

Equivalently, C is the nullspace of the following matrix:

P =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


Check that the 16 elements in C satisfy Px = 0. Can you see that there are no more solutions? This
is a lot easier to check than the checking if all elements of C are combinations of the rows of G. The
matrix P is called the parity check matrix of the code C. Note that the columns of P are exactly the
nonzero elements of (Z2)3.

To finish we need some coding theory terminology which will help us see that the Hamming code above
can correct one error.

Definition 9.2.6. 1. The Hamming distance of two words u,v in (Z2)n is the number of places in
which they are different. Mathematcially:

d(u,v) = |{i : ui 6= vi, for i = 1, . . . , n}|

For example, d(1011, 1001) = 1 since the two words differ only in position 3, while d(1011, 1000) = 2.

97

It is useful to think of the Hamming distance geometrically as the smallest number of edges of the
unit cube that you need to walk on to go from u to v. The way to “walk” from a corner of the
unit cube to another, is to start with the initial corner and move successively to a neighboring corner,
which is a word that differs from the given word in exactly one digit. For example, we can “walk”
from 1101 to 1000 by successively making the moves 1011→ 1001→ 1000. You could have also done
1011 → 1010 → 1000. There are other longer routes between 1011 and 1000 through the corners of
the cube but the smallest number of steps needed is unique and this number of steps is the Hamming
distance between 1101 and 1000, namely d(1011, 1000) = 2.

2. The minimum distance of a code C is the smallest distance between any two words in C. Mathe-
matically,

d(C) := min{d(u,v) : u,v ∈ C, u 6= v}

In our example C, d(C) = 3. Check that any two code words differ in at least 3 bits and there are
pairs with Hamming distance exactly 3.

3. A code C ⊆ (Z2)n corrects t errors if for every u ∈ (Z2)n there is at most one v ∈ C such that
d(u,v) ≤ t.
For example, our code C corrects one error if for every u ∈ (Z2)7 there is at most one string in C at
distance 1 or 0 from u ∈ (Z2)7. Our example is indeed a one-error correcting code. Please check on a
few examples. We will prove this shortly.

Theorem 9.2.7. A code C corrects t errors if and only if d(C) ≥ 2t+ 1.

We will prove the following special case which should help you see how to prove the general case. Also,
everything below is about 1-correcting codes. The arguments generalize.

Theorem 9.2.8. A code C corrects 1 error if and only if d(C) ≥ 3.

Proof. Suppose d(C) ≤ 2. Then there are two code words u,v ∈ C such that d(u,v) ≤ 2. This means that
either u and v are neighboring vertices of the unit cube or there is way to walk along the edges of the unit
cube in Rn from u to v via a word w which is also a corner of the unit cube. In the first case, there is a
code word within distance 1 from u and in the second case, the word w has two code words within distance
1 from it. Either way, C cannot correct 1 error by definition. This proves that if C corrects 1 error then
d(C) ≥ 3.

For the converse, suppose C is not 1-correcting. Then there is some w ∈ (Z2)n such that there are two or
more code words within distance 1 of it. Suppose u,v ∈ C are two of these code words. Then by the same
argument as above, we can walk from u to v via w in two steps. This in turn means that d(C) ≤ 2.

We now introduce the generalized Hamming code which is the family of codes in which our example code
lives. We will see that they are all have d(C) = 3 and are hence 1-correcting codes.

Definition 9.2.9. Fix a positive integer l. The generalized Hamming code (for l) is the linear code
in (Z2)n where n = 2l − 1 with parity matrix P whose columns are all the nonzero elements of (Z2)l. In
particular, generalized Hamming codes are linear codes since they are solutions of Px = 0.

Example 9.2.10. In our code C, l = 3. The code words are in (Z2)7 and 7 = 23 − 1. The parity matrix P
has all the nonzero elements of (Z2)3 as columns.

Theorem 9.2.11. The generalized Hamming code C has d(C) = 3 and thus is a 1-error correcting code.

Proof. We first note that for any linear code C,

d(C) = min{d(0,u) : u ∈ C, u 6= 0}.

In other words, to compute the smallest distance between two code words, it is enough to compute the
smallest distance between 0 and any code word. Suppose not. Then there are two nonzero code words u,w

98

whose distance is d(C). Now consider 0 = u − u and w = v − u. Since C is a subspace, 0 = u − u and
w = v − u are also in C and distances don’t change under subtraction, so d(C) = d(0,w) .

To prove our theorem, we need to show that d(C) ≥ 3 which by the above is same as showing that
d(0,w) ≥ 3 for every nonzero w ∈ C. This is in turn is same as showing that every nonzero w ∈ C has at
least 3 nonzero bits. The parity matrix now helps. We can show that no word w with at most 2 nonzero
bits satisfies Pw = 0. If w had only one nonzero bit then Pw = 0 if and only if a column of P is 0, but this
is not allowed in the definition of P . If w had two nonzero bits and Pw = 0 then two columns of P are the
same which is also not true. Therefore we are done.

Thus we see that our running example code C is 1-error correcting. To finish, let’s see how one encodes
and decodes messages using the Hamming code.

9.2.1 Encoding and Decoding Messages using the Hamming Code

How can we encode and decode given a 1-correcting linear code C ⊆ (Z2)n with generator
matrix G of size k × n and parity check matrix P of size (n− k)× n?

Encoding: Given a word v ∈ (Z2)k we encode it as w = v>G ∈ C.
In homework you will argue that we can always choose G to look like G =

[
Ik A

]
. Therefore, the first k

block of w = v>G is just v. More generally, for any G, if there is no error, then we can recover v by solving
w = v>G which has a unique solution since the rows of G are linearly independent. Check that with the G
we had for our Hamming code in (Z2)7, 1011 would be sent to (1, 0, 1, 1)G = 1011001 as we had before.

Decoding: Suppose we send the code word w and receive w′. If at most one error has occurred we
have w′ = w or w′ = w + ei for some i ∈ {1, 2, . . . , n}. If w′ = w then Pw′ = 0. If w′ = w + ei
then Pw′ = Pw + Pei = Pei which is the ith column of P . Thus if there was at most one error, we can
immediately tell if an error occurred and we see which bit was wrong, namely the ith bit was wrong and
there is a unique correction.

In homework you will see that if you have a basis of any subspace stored as the rows of G =
[
Ik A

]
,

then the subspace is the set of solutions of
[
−A> In−k

]
x = 0.

99

Chapter 10

Vector Spaces over C

In this final chapter we will see vector spaces over C, the set of complex numbers. Many of the results we
have seen so far for vectors and matrices over R will carry over to C once we have the correct definitions. The
first step is understanding the basics of C itself. After introducing complex numbers, we look at complex
vectors, then complex matrices and then the complex spectral theorem.

10.1 Complex Numbers

Recall that a complex number z ∈ C has the form z = a + bi where a, b ∈ R. The imaginary i =
√
−1 is

defined to be i2 = −1 or equivalently, the solution to x2 = −1. We call a the real part of z, denoted Re(z)
and we call b the imaginary part of z, denoted Im(z). We can add and multiply complex numbers:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Every complex number has a complex conjugate that we have seen before.

Definition 10.1.1. If z = a + bi then the complex conjugate of z, denoted z, is the complex number
z = a− bi.

Note that if z ∈ R then z = z. We can visualize complex numbers (and their conjugates) in the complex
plane with imaginary and real axes as follows:

100

The numbers z = a+ bi and z = a− bi work together as follows:

• z + z = (a+ bi) + (a− bi) = 2a = 2Re(z) ∈ R

• zz = (a+ bi)(a− bi) = a2 + b2 ∈ R

• For z, w ∈ C, zw = z w and z + w = z + w

The length (or modulus) of the complex number z is the real number

|z| =
√
zz =

√
a2 + b2.

It is the Euclidean length of the vector denoting z, in the complex plane. Also,

1

z
=

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi
a2 + b2

=
z

zz
=

z

|z|2
∈ C

and if a2 + b2 = |z| = 1 then 1
z = z.

Taking powers of complex numbers can be computationally difficult based on what we have so far. The
polar form of a complex number greatly reduces this difficulty and will be important to learn. Given any
z ∈ C, setting r = |z|, we can write

z = |z|(cos θ + i sin θ) = r(cos θ + i sin θ) = reiθ

Example 10.1.2. Let z = 3− 2i. We can see that |z| =
√

9 + 4 =
√

13, hence

z =
√

13(
3√
13
− 2√

13
i)

This means that cos θ = 3√
13

and sin θ = −2√
13

hence we can find θ via θ = cos−1
(

3√
13

)
= sin−1

(
−2√
13

)
Using series expansions, we get that cos θ+ i sin θ = eiθ. Hence, if z = r(cos θ+ i sin θ) then z = reiθ and

zn = (reiθ)n = rneinθ = rn(cosnθ + i sinnθ)

Moreover, if |z| = 1, then r = 1 and zn = einθ. That is, zn is just z rotated by θ, n times. The polar form
tells us the all important fact that when you multiply two complex numbers you multiply the lengths
and add the angles.

Now that we have a grasp on the elements of C, we can look at vector spaces over C.

10.2 Complex Vectors and the Vector Space Cn

Define a complex vector to be

z =

z1

...
zn

 ∈ Cn

where zj = aj + ibj ∈ C for all j. Verify that Cn is a vector space over C with respect to addition and scalar
multiplication where the set of scalars is C:

Addition: z =

z1

...
zn

 ,w =

w1

...
wn

 ∈ Cn ⇒ z + w =

z1 + w1

...
zn + wn

 ∈ Cn

101

Scalar multiplication: a+ bi ∈ C, z ∈ Cn ⇒ (a+ bi)z =

(a+ bi)z1

...
(a+ bi)zn

 ∈ Cn

The analog of the transpose of a real vector is the following.

Definition 10.2.1. Given z =

z1

...
zn

 ∈ Cn, the conjugate transpose of z is

z> =
[
z1 · · · zn

]
Given any complex number zi, recall that zizi ∈ R. We can expand on this idea and use conjugate

transposes to define norms of complex vectors. Given z ∈ Cn check that z>z ∈ R. We define the norm of z
to be the real number

||z|| =
√

z>z

A common notation for the conjugate transpose is z∗ = z>. We will adopt this notation from now on.

Note that if z ∈ C then z∗ = z. Therefore, the formula for the length of z ∈ C which is |z| =
√
zz is a

special case of the formula for the length of a vector z ∈ Cn which is ||z|| =
√

z>z.

Example 10.2.2. Let z =

[
2− i
3 + 5i

]
and z∗ =

[
2 + i 3− 5i

]
. Then

z∗z =
[
2 + i 3− 5i

] [2− i
3 + 5i

]
= |2− i|2 + |3 + 5i|2 = 5 + 34

and hence ‖z‖ =
√

39.

Using conjugate transposes we can also define an inner product on Cn.

Definition 10.2.3. The Hermitian inner product of u =

u1

...
un

 and v =

v1

...
vn

 ∈ Cn is

v∗u =
[
v1 · · · vn

] u1

...
un

 = v1u1 + · · ·+ vnun

• We say that u and v are orthogonal if v∗u = 0, or equivalently, if u∗v = 0.

• We say that u and v are orthonormal if u∗v = 0 and ||u|| = ||v|| = 1.

Example 10.2.4. The vectors u =

[
1
i

]
and v =

[
i
1

]
in C2 are orthogonal since

u∗v =
[
1 −i

] [i
1

]
= 0

They are not orthonormal since their moduli are not 1.

Check for yourself that if you just took the transpose of a complex vector and computed z>z, you may
not get a nonnegative real number. For example, if z = 1 + i then z>z = (1 + i)>(1 + i) = 2i which is

not a real number. If z =

[
1
i

]
then z>z = 0 which cannot be the length of a nonzero vector. Therefore, it

is necessary to take the conjugate transpose as opposed to just the transpose when we work with complex
numbers and vectors.

102

10.3 Cm×n and the Complex Spectral Theorem

We can now define a complex matrix as A = (zij) ∈ Cm×n with zij ∈ C for all i, j. The conjugate
transpose of A is obtained by transposing A and then conjugating all entries, i.e.,

A∗ = (zji) ∈ Cn×m

Example 10.3.1. Let A =

[
1 i
0 1 + i

]
then the conjugate transpose is A∗ =

[
1 0
−i 1− i

]
.

We also mention that the usual properties of transpose carry over into the complex setting, namely,

(Au)∗v = u∗(A∗v) and (AB)∗ = B∗A∗

We can now define the complex analog of a symmetric matrix which appears in numerous applications.

Definition 10.3.2. A matrix A ∈ Cn×n is Hermitian if A = A∗.

A consequence of this definition is that every real symmetric matrix is Hermitian.

Example 10.3.3. If A =

[
2 3− 3i

3 + 3i 5

]
then A∗ =

[
2 3− 3i

3 + 3i 5

]
= A, and hence A is Hermitian.

As we had with symmetric matrices, Hermitian matrices have three important properties that combine
to give the spectral theorem in the complex setting.

Proposition 10.3.4. If A is Hermitian and z ∈ Cn then z∗Az ∈ R.

Proof. Recall that a complex number z is real if and only if z = z. Taking the conjugate of z∗Az and using
the fact that A = A∗, we see that

(z∗Az)∗ = z∗A∗(z∗)∗ = z∗A∗z = z∗Az.

Therefore, z∗Az ∈ R.

Proposition 10.3.5. Every eigenvalue of a Hermitian matrix is real.

Proof. Assume that A∗ = A and Az = λz with λ ∈ C. Then from Proposition 10.3.4 we know that

z∗Az = z∗λz = λz∗z = λ||z||2 ∈ R

Since ||z||2 ∈ R, we must have λ ∈ R as well.

Example 10.3.6. Continuing the example from above with A =

[
2 3− 3i

3 + 3i 5

]
we have that

det(A− λI) = det
([2− λ 3− 3i

3 + 3i 5− λ

])
= λ2 − 7λ− 8 = (λ− 8)(λ+ 1)

and so the eigenvalues of A are 8 and −1 which are real.

Proposition 10.3.7. Let A ∈ Cn×n be Hermitian and assume that Az = λz, Ay = βy with λ 6= β and
z,y ∈ Cn. Then y∗z = 0. That is, eigenvectors of a Hermitian matrix corresponding to different eigenvalues
are always orthogonal.

103

Proof. First, observe that
y∗Az = y∗λz = λy∗z

Furthermore, since Ay = βy and β ∈ R, we have that

(Ay)∗ = (βy)∗ = βy∗ =⇒ y∗A∗ = βy∗

Multiplying both sides of this equation by z on the right (and using the fact that A is Hermitian) we can
conclude that

y∗A∗z = y∗Az = βy∗z

Now we have two expressions for y∗Az, and equating them we get

λy∗z = βy∗z =⇒ (λ− β)y∗z = 0 =⇒ y∗z = 0

since λ 6= β.

Example 10.3.8. Carrying on with the same matrix from the previous two examples we have

A =

[
2 3− 3i

3 + 3i 5

]
with eigenvalues λ = 8 and λ = −1. The corresponding eigenvectors are

z =

[
1

1 + i

]
and y =

[
1− i
−1

]
respectively. Computing their inner product we can see that

y∗z =
[
1 + i −1

] [1
1 + i

]
= (1 + i)− (1 + i) = 0

Furthermore, we can divide these vectors by their norms to obtain orthonormal vectors

z

||z||
=

1√
3

[
1

1 + i

]
and

y

||y||
=

1√
3

[
1− i

1

]
Since these vectors live in C2 we can conclude that they are actually an orthonormal basis of C2 (with respect
to the Hermitian inner product). This phenomenon always happens with Hermitian matrices. We have an
orthonormal basis of eigenvectors, therefore, we can diagonalize A by writing

A = Q

[
8 0
0 −1

]
Q∗

where

Q =
1√
3

[
1 1− i

1 + i −1

]
This matrix is special in that its conjugate transpose equals its inverse. This is a consequence of the fact
that its columns form an orthonormal basis.

Definition 10.3.9. A complex square matrix Q with the property that Q∗Q = QQ∗ = I is called a unitary
matrix. It is the complex analog of an orthonormal real matrix.

We can now combine all these ideas to arrive at the complex spectral theorem.

104

Theorem 10.3.10. If A ∈ Cn×n is Hermitian then

• All eigenvalues of A are real.

• Cn has an orthonormal basis of eigenvectors of A.

• If Q is the eigenvector matrix for A, then Q is unitary.

• The matrix A is unitarily diagonalizable, i.e. there exists a diagonal matrix Λ ∈ Rn×n and a unitary
matrix Q such that

A = QΛQ∗

Example 10.3.11. Writing out the unitary diagonalization for the matrix A =

[
2 3− 3i

3 + 3i 5

]
we get[

2 3− 3i
3 + 3i 5

]
=

1√
3

[
1 1− i

1 + i −1

] [
8 0
0 −1

]
1√
3

[
1 1− i

1 + i −1

]
Unitary matrices have special properties.

Theorem 10.3.12. Let Q ∈ Cn×n be unitary. If λ ∈ C is an eigenvalue of Q then |λ| = 1. If u and v are
eigenvectors of Q corresponding to different eigenvalues then u and v are orthogonal.

Proof. Suppose x ∈ Cn. Then ‖x‖2 = 〈x,x〉 = x∗x = x∗Q∗Qx = (Qx)∗(Qx) = 〈Qx, Qx〉 = ‖Qx‖2. Recall
that orthonormal real matrices also had this property. If now Qu = λu for a non-zero u, then ‖Qu‖ = |λ|‖u‖.
However, since ‖Qu‖ = ‖u‖ it must be that |λ| = 1. Recall that if |λ| = 1 then λ = 1

λ .
Now suppose Qu = λu and Qv = µv where λ 6= µ. Then

〈u,v〉 = 〈Qu, Qv〉 = 〈λu, µv〉 = µλ〈u,v〉 =
λ

µ
〈u,v〉.

Since λ 6= µ, λ
µ 6= 1. Therefore it must be that 〈u,v〉 = 0.

Any matrix of the form B∗B where B ∈ Ck×n is Hermitian since (B∗B)∗ = B∗B.

Definition 10.3.13. A Hermitian matrix A ∈ Cn×n is positive semidefinite if A = B∗B for some
B ∈ Ck×n.

Example 10.3.14. Let B =
[
1 2 + i

]
. Then

B∗B =

[
1

2− i

] [
1 2 + i

]
=

[
1 2 + i

2− i 5

]
is positive semidefinite.

As for real PSD matrices, all eigenvalues of a Hermitian PSD matrix are nonnegative real numbers.

Proposition 10.3.15. If A ∈ Cn×n is Hermitian and PSD then all its eigenvalues are nonnegative real
numbers.

Proof. Suppose A is Hermitian PSD. Then there exists B ∈ Ck×n such that A = B∗B. Suppose Az = λz
where z 6= 0. Since A is Hermitian we know that λ ∈ R and since A = B∗B we have that (B∗B)z = λz.
Multiplying both sides of this last equation by z∗ we get

z∗(B∗B)z = λz∗z ⇒ (Bz)∗(Bz) = λ‖z‖2 ⇒ ‖Bz‖2 = λ‖z‖2.

This implies that λ = ‖Bz‖2
‖z‖2 ≥ 0.

There is much more to discover about the world of complex matrices. Many of the nice theorems and
properties we have seen for real matrices have their complex analogs, and often times the statements in the
complex setting simply involve interchanging the word transpose, with conjugate transpose, symmetric with
Hermitian, and orthogonal with unitary.

105

10.4 Application: Fourier Analysis

Let V be the set of all functions f : R → C that are periodic with period 2π. This means that f(x) =
f(x+ 2π) for all x ∈ R. Recall that we can add and scalar multiply functions by the rule

(f + g)(x) = f(x) + g(x), (γf)(x) = γf(x) ∀ γ ∈ C

Under these rules, V is a vector space over C. We can also assume that functions in V are sufficiently nice
in the sense of being bounded and continuous without changing that V is a complex vector space.

The functions einx = cos(nx) + i sin(nx) for n = 0,±1,±2,±3, . . . lie in V . Recall that we can interpret
einx as a unit vector in the complex plane, which as a function of x, rotates around the unit circle making
n revolutions as x varies between 0 to 2π. So for different integer values of n we have infinitely many unit
vectors rotating around the unit circle in the complex plane at different speeds. If n is a negative integer,
the rotation is clockwise, while if n is a positive integer the rotation is counter clockwise.

The vector space V has an inner product defined as

〈f, g〉 =

∫ π

−π
f(x)g(x)dx

The norm of a function f under this inner product is

‖f‖2 =

∫ π

−π
f(x)f(x)dx =

∫ π

−π
|f(x)|2dx

In particular, ‖einx‖2 =
∫ π
−π e

inxe−inxdx =
∫ π
−π dx = 2π, and so ‖einx‖ =

√
2π. Check that

〈einx, eimx〉 =

∫ π

−π
einxe−imxdx =

∫ π

−π
ei(n−m)xdx =

{
0 if n 6= m
2π if n = m

From these calculations we conclude that the infinite set of functions

φn =
1√
2π
einx, n ∈ Z

are orthonormal. It turns out that the vector φn also span the vector space V . Therefore, any f ∈ V can be
written uniquely as

f =
∑
n∈Z

f̂ne
inx =

∑
n∈Z

√
2πf̂nφn

which is called the Fourier series of f . The coefficients {f̂n} are the Fourier coefficients of f and they
tell you how much of each function φn is in f . We conclude that V is an infinite-dimensional vector space
with orthonormal basis {φn : n ∈ Z}.

Since {φn} is an orthonormal basis of V , we can compute the coefficients f̂n easily:

√
2πf̂n = 〈f, φn〉 =

∫ π

−π
f(x)

1√
2π
e−inxdx

which implies that

f̂n =
1

2π

∫ π

−π
f(x)e−inxdx

If f is real valued, meaning f : R → R then the Fourier series of f is an infinite sum of sines and cosines
of increasing frequency. Fourier analysis is the basis of signal processing allowing us to understand the
components of a periodic signal which then gives us the ability to modify the signal or compress it by
removing all components with really small Fourier coefficients.

Here are some examples of Fourier series. Assume that all functions below are periodic with period 2π:

106

1. f(x) = x ⇒ f(x) = 2
∑∞

1
(−1)n+1

n sinnx

2. f(x) = | sin(x)| ⇒ f(x) = 2
π −

4
π

∑∞
1

cos 2nx
4n2−1

The 3blue1brown video on Fourier series gives a nice animation of how one can see any function in V as
a sum of scaled rotating unit vectors in the complex plane. It also has nice illustrations of how sine/cosine
waves make up a periodic function as above.

10.4.1 The Discrete Fourier Transform (DFT)

Sometimes we do not know the function f but instead have a set of measurements which are values of
f at discrete points x0, . . . , xn−1 ∈ R. This is the case if we observe f through an experiment. Let
f = (f0, f1, . . . , fn−1)> ∈ Cn denote the vector of observed data where fi = f(xi). It is still the case the f is

a sum of weighted frequency functions as above where the weights denoted by f̂i are the Fourier coefficients.
The formula for f̂k in this discrete setting is

f̂k =

n−1∑
j=0

fje
−i 2πn kj =

n−1∑
j=0

fj(e
−i 2πn)kj

Let ωn := e−i
2π
n = cos(2π

n)− i sin(2π
n). Then note that (ωn)n = e−i2π = cos(2π)− i sin(2π) = 1 which means

that ωn is a nth root of 1, meaning that it is a solution to the equation xn = 1. We can also think of ωn as
a unit vector in the complex plane and the powers ωn, ω

2
n, ω

3
n, . . . , ω

n
n = 1 are n unit vectors spaced evenly

around the unit circle in the complex plane with the angle between any two consecutive vectors being 2π
n . In

the rest of this section it would be useful to have ω8 in mind. The powers ω8, ω
2
8 , . . . , ω

7
8 , 1 are 8 unit vectors

in the complex plane each 450 from the next.
With the notation for ωn, notice that we can rewrite the expression for f̂k as a dot product of vectors.

More generally, setting f̂ = (f̂0, f̂1, . . . , f̂n−1)> we have that
f̂0

f̂1

f̂2

...

f̂n−1

 =


1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1

n

1 ω2
n ω4

n ω6
n · · · ω

2(n−1)
n

...
...

...
...

...
...

1 ωn−1
n ω

2(n−1)
n ω

3(n−1)
n · · · ω

(n−1)2

n


︸ ︷︷ ︸

Fn


f0

f1

f2

...
fn−1



The matrix Fn is called the discrete Fourier transform. Note that it is a Vandermonde matrix and is
hence invertible. It turns out that 1√

n
Fn is unitary which makes it easy to compute F−1

n . This allows us

to compute f from f̂ by inverting Fn in the formula f̂ = Fnf . The matrix F−1
n is the inverse discrete

Fourier transform.
The discrete Fourier transform is behind a huge part of our everyday life such as audio, video and image

processing. It is the basis of signal processing in general. It is how jpeg works for example. See the videos
by Steve Brunton for several applications of the DFT.

10.4.2 The Fast Fourier Transform (FFT)

Since the DFT is so very essential to our everyday life, it is crucial that it can be computed efficiently.
The Fast Fourier Transform is an algorithm that computes the DFT efficiently making applications actually
possible. Check that the multiplication Fnf involves O(n2) calculations. The FFT does this multiplication
in O(n log n) steps which makes all the difference in being to implement the DFT. When n is large, n log n
is more or less like n. The FFT was named one of the top 10 algorithms of the 20th century by Science
magazine, some will argue it is the top algorithm of the last century.

107

The idea behind the FFT is to decompose Fn as a product of sparse matrices so that the matrix vector
multiplication Fnf can be done very fast, in O(n log n) time. Let’s see how this works on an example.

Example 10.4.1. Let n = 8. Setting w := ω8 we get

F8 =



1 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 w6 w7

1 w2 w4 w6 w8 w10 w12 w14

1 w3 w6 w9 w12 w15 w18 w21

1 w4 w8 w12 w16 w20 w24 w28

1 w5 w10 w15 w20 w25 w30 w35

1 w6 w12 w18 w24 w30 w36 w42

1 w7 w14 w21 w28 w35 w42 w49


The first step is to permute the columns of F8 so that columns 1, 3, 5, 7 are first followed by columns 2, 4, 6, 8.
This can be achieved by multiplying F8 on the right by the following permutation matrix:

P8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


Computing F8P8 and rewriting selectively using w8 = 1, w4 = −1, w6 = −w2, w7 = −w3 etc, we get

F8P8 =



1 1 1 1 1 1 1 1
1 w2 w4 w6 w w3 w5 w7

1 w4 w8 w12 w2 w6 w10 w14

1 w6 w12 w18 w3 w9 w15 w21

1 w8 w16 w24 w4 w12 w20 w28

1 w10 w20 w30 w5 w15 w25 w35

1 w12 w24 w36 w6 w18 w30 w42

1 w14 w28 w42 w7 w21 w35 w49


=



1 1 1 1 1 1 1 1
1 w2 w4 w6 w w3 w5 w7

1 w4 w8 w12 w2 w6 w10 w14

1 w6 w12 w18 w3 w9 w15 w21

1 1 1 1 −1 −1 −1 −1
1 w2 w4 w6 −w −w3 −w5 −w7

1 w4 w8 w12 −w2 −w6 −w10 −w14

1 w6 w12 w18 −w3 −w9 −w15 −w21


Setting

D4 =


1 0 0 0
0 w 0 0
0 0 w2 0
0 0 0 w3


we see that

F8P8 =

[
I4 D4

I4 −D4

] [
F4 0

0 F4

]
Recursively, we can rewrite F4 and F2 in the same way as

F4P4 =

[
I2 D2

I2 −D2

] [
F2 0

0 F2

]
and F2P2 =

[
1 1
1 −1

] [
1 0
0 1

]
Assembling all the pieces back together we get a simple expression for F8 as a product of sparse matrices.
This is how the FFT works.

108

	Eigenvalues and Diagonalization
	Eigenvalues and Eigenvectors
	The characteristic polynomial
	Arithmetic and geometric multiplicities
	Complex eigenvalues
	Eigenvalues of powers and inverses

	Diagonalization
	Applications of Diagonalization

	Similar Matrices
	Determinants and Permutations
	A Quick Primer on Logic

	Difference Equations
	Fibonacci sequence
	The general setting
	Back to the Fibonacci sequence
	Fibonacci numbers and the golden ratio – an aside

	Markov Matrices
	Longterm Behavior of Rental Cars
	Positive Markov Matrices
	Non-negative Markov Matrices
	 Adjacency Matrices of Graphs
	Google Page Rank

	Orthogonality and Projections
	Orthogonal Vectors and Subspaces
	Orthogonal complements
	Projections
	Linear Regression

	Symmetric Matrices
	Eigenvalues and Eigenvectors of Real Symmetric Matrices
	The Spectral Theorem for Real Symmetric Matrices
	Diagonalization and change of basis

	Positive Semidefinite Matrices
	Symmetric Matrices and Quadratic Forms
	Gram Matrices
	Application: Connectivity of a Graph
	Application: Spectral Clustering
	Application: Distance Realization

	Polynomial Vector Spaces
	Univariate Polynomials
	The infinite-dimensional vector space R[x]
	The finite-dimensional vector space R[x]d
	Polynomial Interpolation

	Solving a Univariate Polynomial Equation
	Quotients of R[x] (Optional)
	Warm up: Integers mod 5
	Polynomials mod p(x)
	Proof of the algorithm for solving a polynomial equation

	Singular Value Decomposition
	Structure of the SVD
	The Reduced SVD
	Three Immediate Consequences
	Rank One Decomposition
	Polar Decomposition
	Change of Bases

	Geometry of the SVD
	Application: Low Rank Approximations of a Matrix
	Best Fit k-Planes
	Application: Principal Component Analysis (PCA)

	Error Correcting Codes
	Vector spaces over finite fields
	Hamming Code
	Encoding and Decoding Messages using the Hamming Code

	Vector Spaces over C
	Complex Numbers
	Complex Vectors and the Vector Space Cn
	Cm n and the Complex Spectral Theorem
	Application: Fourier Analysis
	The Discrete Fourier Transform (DFT)
	The Fast Fourier Transform (FFT)

