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Chapter 1

Systems of Linear Equations

1.1 Solving Linear Equations

We have all seen a linear system of equations at some point in gradeschool, and we first learned how to
attack these systems using the methods of substitution and elimination. We begin with a refreshing example
of a linear system with three equations and three unknowns.

Example 1.1.1.


x1 + x2 − x3 = 7

2x1 + 3x3 = 5

− 5x2 = −10

We define a solution of this system as an ordered triple of real numbers, (x1, x2, x3)︸ ︷︷ ︸
also called a 3-tuple

, which simul-

taneously satisfies all equations.
One solution of this system is (4, 2,−1) because

4 + 2− (−1) = 7

2(4) + 3(−1) = 5

and
−5(2) = −10

It is also worth noting that this solution is the same thing as an ordinary point in 3-dimensional Euclidean
space, and we are immediately able to talk about geometry (much more to come).

Next, we must get our hands around the vocabulary of linear systems, the first of which is distinguishing
one type of variable from another.

Definition 1.1.2. A variable that appears as the first (left-most) term of at least one equation is a leading
variable. In the above example, x1 and x2 are leading variables.

Definition 1.1.3. If a linear system has no solutions, then it is inconsistent. If a linear system has at
least one solution, then it is consistent.

Example 1.1.4.

{
2x1 − 3x2 + x3 = 8

2x2 = 5
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This is an example of a linear system with infinitely many solutions. In fact, for any real number t, the
tuple

(
31

4
− 1

2
t,

5

2
, t)

represents a solution and we can verify directly that it is a solution by plugging in 31
4 −

1
2 t for x1, 5

2 for x2,
and t for x3 and checking that all the t’s cancel to give equality.

Here, t is called a free variable or free parameter.

Now that we have some language to work with, we will need to investigate the possible forms a system
can have. In particular, there are two.

1. Triangular form: An example of a linear system in triangular form is
4x1 − 2x2 + 3x3 + x4 = 17

x2 − 2x3 − x4 = 0

5x3 + 2x4 = 20

3x4 = 15

We can solve a system like this using back substitution (using the last equation first). In doing this
we see that

3x4 = 15 =⇒ x4 = 5

We then apply this to the third equation and get

5x3 + 2x4 = 5x3 + 2(5) = 20 =⇒ 5x3 = 10 =⇒ x3 = 2

Applying the same procedure to the second and first equation we find that x2 = 9 and x1 = 6 (you
should verify this for yourself!). The final solution is then given by

(x1, x2, x3, x4) = (6, 9, 2, 5)

In general, triangular forms have three main properties:

• There are the same number of equations as variables.

• Every variable is the leading variable of exactly one equation.

• A triangular system has exactly one solution. We refer to this as a unique solution.

2. Echelon Form

This is the more general form that a linear system can have and we can characterize it according to
two (or three) main properties:

• Every variable is the leading variable of at most one equation.

• The system is organized in a descending stair-step pattern.

If a linear system satisfies both of these properties then we say the system is in echelon form.
The last porperty of a system in echelon form is

• There are either no solutions, exactly one solution, or infinitely many solutions.

To build off of the last point, we can actually say something more general.
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Theorem 1.1.5. Any system of linear equations has either

• No solutions (this is known as an inconsistent linear system).

• Exactly one solution.
or

• Infinitely many solutions.

The latter two cases define what we call a consistent linear system.

Example 1.1.6. The following linear system is in echelon form.{
3x1 − x3 = 7

x2 = 10

Example 1.1.7. The following linear system is not in echelon form because the linear equations do not
form a stair-step pattern.

3x1 + x2 − x3 = 7

x3 = 5

x2 + 9x3 = 11

Example 1.1.8. The following linear system is not in echelon form because x1 is the leading variable of
more than one equation.{

3x1 − x3 = 7

x1 + x2 = 9

Definition 1.1.9. For a system in echelon form, any variable that does not appear as a leading variable is
called a free variable, hence all variables in a system are either leading or free.

Here are some nice facts to remember about systems in echelon form.

1. If an echelon system has no free variables, it must be triangular and therefore has exactly one solution.

2. If an echelon system has at least one free variable, then it has infinitely many solutions.

Now that we have much of the needed vocabulary, lets end the section with a fully worked example.

Example 1.1.10. Consider the linear system{
2x1 − x2 + 5x3 − x4 = −30

x3 + x4 = −6

This is a system in echelon form with x1, x3 as leading variables and x2, x4 as free variables. We solve
the system in two steps.

Step 1: Denote free variables. Let x2 = t1 and x4 = t2 and remember these can be any real number!

Step 2: Plug the free variables into the system and solve for leading variables. Starting with the second
equation we have

x3 + t2 = −6 =⇒ x3 = −t2 − 6
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Plugging this into the first equation we have

2x1 − t1 + 5(−t2 − 6)− t2 = −30 =⇒ 2x1 − t1 − 5t2 − t2 = 0 =⇒ 2x1 − t1 − 6t2 = 0

Using this to solve for x1 we get

2x1 = t1 + 6t2 =⇒ x1 =
1

2
t1 + 3t2

The (infinitely many) solutions of this linear system have the form

(x1, x2, x3, x4) = (
1

2
t1 + 3t2, t1,−t2 − 6, t2)

with t1, t2 as free variables.

1.2 Linear Systems and Matrices

In this section we dive deeper into the procedures for solving linear systems and in the process, encounter
matrices for the first time. These procedures will transform any linear system into one in echelon form and
produce a new linear system with the exact same solution set.

Definition 1.2.1. Two linear systems are equivalent if they have the same solution set. The notion of
being equivalent is denoted with the symbol “∼”.

The way in which we get from an arbitrary linear system to an echelon one is by applying elementary
row operations. These consist of three possible “moves” that transform a system into an equivalent one:

1. Interchange two equations.

2. Replace one equation with a non-zero multiple of itself.

3. Add one equation to a multiple of another.

Example 1.2.2.

{−4x1 + 5x2 = 20

x1 − 2x2 = 14

∼

{
x1 − 2x2 = 14

−4x1 + 5x2 = 20
(interchange equations)

∼

{
4x1 − 8x2 = 56

−4x1 + 5x2 = 20
(multiply equation 1 by 4)

∼

{
4x1 − 8x2 = 56

− 3x2 = 76
(add equation 1 to equation 2)

Notice the last (equivalent) system is in echelon form!

This example illustrates the general procedure, but the main tool that we use to streamline the procedure
is that of augmented matrices. When we solve a linear system, we are only working with the coefficients of
the linear equations, so we place the coefficients in an array called an augmented matrix.

Example 1.2.3. The linear system
x1 − 2x2 + 3x3 = 9

−x1 + 3x3 = −4

2x1 − 5x2 + 5x3 = 17
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has associated augmented matrix given by 1 −2 3 9
−1 0 3 −4
2 −5 5 17


We can now translate vocabulary from linear systems into that for matrices. Once we do this we will

never look back. Similar to that of linear systems, there are two special types of matrices.

1. Echelon Form.

• Every leading term (the first nonzero number in a row) is in a column to the left of the leading
term of the row below it.

• Any zero rows (rows of all zeroes) are at the bottom.

In general, we call any leading term of a non-zero row a pivot.

Example 1.2.4. 3 0 4 5
0 1 3 0
0 0 0 0


is a matrix in echelon form with pivots being the entries 3 and 1.

The matrices 0 1 0 3
4 5 6 1
0 0 0 0

 ,
0 0 0

0 1 1
0 0 2

 ,
1 2 3 4

2 3 4 5
0 0 0 0


are all not in echelon form. Can you see why?

2. Reduced Echelon Form.

• It is in echelon form.

• All pivot positions contain a 1.

• All other entries in a pivot column(a column that contains a pivot) are 0.

Example 1.2.5.

1 0 0 0
0 1 1 2
0 0 0 0

 is a matrix that is in reduced echelon form.[
0 1 0 0
1 0 2 1

]
is neither in echelon nor reduced echelon form.2 0 1 3

0 −1 1 4
0 0 0 1

 is in echelon form but not in reduced echelon form.1 0 2 1
0 1 3 4
0 0 1 0

 is also in echelon form but not in reduced echelon form.

When working through a solution to a linear system, we can easily follow our own steps by adopting the
following notation for row operations.

1. Interchange row i and row j is denoted
Ri ↔ Rj
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2. Replacing row i with a non-zero multiple (c) times row j is denoted

cRi → Ri

3. Adding a non-zero multiple of row i to row j and applying the change to row j is denoted

cRi +Rj → Rj

In practice, we will use these row operations to transform augmented matrices into systems that are in
echelon or reduced echelon form, at which point we will be able to solve them by back substitution.

This whole process will be most easily learned via examples so let’s jump right in with a continuation of
Example 1.2.3.

Example 1.2.6.  1 −2 3 9
−1 0 3 −4
2 −5 5 17


(R1 +R2 → R2) =⇒

1 −2 3 9
0 −2 6 5
2 −5 5 17


(−2R1 +R3 → R3) =⇒

1 −2 3 9
0 −2 6 5
0 −1 −1 −1


(−1

2
R2 → R2) =⇒

1 −2 3 9
0 1 −3 −5/2
0 −1 −1 −1


(R2 +R3 → R3) =⇒

1 −2 3 9
0 −2 6 5
0 0 −4 −7/2


︸ ︷︷ ︸

echelon form!

This matrix represents the (triangular) linear system
x1 − 2x2 + 3x3 = 9

x2 + 6x3 = −5/2

− 4x3 = −7/2

hence we can use back substitution to obtain the (unique) solution

(x1, x2, x3) = (−113/8,−41/4, 7/8)

Definition 1.2.7. The process of using row operations (like above) to transform a matrix into echelon form
is called Gaussian Elimination.

We can take this one step further, if we prefer, by reducing the given matrix to reduced echelon form.
This is known as Gauss-Jordan Elimination.

Example 1.2.8. Use Gauss-Jordan elimination to solve the linear system
x1 − 3x3 = −2

3x1 + x2 − 2x3 = 5

2x1 + 2x2 + x3 = 4
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We begin with the augmented matrix for this linear system and write a string of equivalent matrices,
ending with the reduced echelon form. We leave the row operations to be determined by the reader.1 0 −3 −2

3 1 −2 5
2 2 1 4

 ∼
1 0 −3 −2

0 1 7 11
0 2 7 8

 ∼
1 0 −3 −2

0 1 7 11
0 0 −7 −14

 ∼
1 0 −3 −2

0 1 7 11
0 0 1 2


We note here that at this point we could stop and use back substitution, we have performed Gaussian
elimination and have arrived at the echelon form. Continuing onward we have

∼

1 0 −3 −2
0 1 0 −3
0 0 1 2

 ∼
1 0 0 4

0 1 0 −3
0 0 1 2


Translating back to the linear system, we have the (unique) solution

(x1, x2, x3) = (4,−3, 2)

Before ending the chapter, we note that there is a methodical way to clear out entries of augmented
matrices, starting in the upper left corner, moving down column 1, then to the entry in the second column
and second row, then down the entire second column, etc. Having a methodical approach to row reductions
will reduce errors and make row reductions much easier with a little practice.
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Chapter 2

Euclidean Space

We now translate from the algebraic nature of linear systems to their underlying geometry. We begin with
a quick refresher on vectors and Euclidean space, then spend the majority of the chapter introducing the all
important notions of span and linear independence.

2.1 Vectors

Vectors are the fundamental object of linear algebra and we will use them frequently.

Definition 2.1.1. A vector is an ordered list of real numbers that can be expressed in two ways:

• Column vector

u =


u1
u2
...
un


• Row vector

u = (u1, u2, . . . , un)

We will use column vectors most of the time, but it is good to know that both notations can mean the
same thing.

Just like with real numbers, we can perform arithmetic with vectors. Let u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) with c a real number (also known as a scalar).

We can multiply vectors by scalars as follows

cu =

cu1...
cun


We can also add two vectors, as long as they have the same number of coordinates.

u + v =


u1 + v1
u2 + v2

...
un + vn


Lastly, u = v if and only if u1 = v1, u2 = v2, . . . , un = vn.
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Definition 2.1.2. The set of all vectors with n entries (components), together with the above operations of
scalar multiplication and vector addition, form what is known as n-dimensional Euclidean space. We denote
this space by Rn. For the vectors u and v defined above, we use the symbol “∈” to denote that the vector
lives in Rn. Similarly, since the scalar c is a real number, it lives in the set of real numbers, which we
denote by writing c ∈ R. We will use this notation frequently from now on.

In R2 and R3 we usually represent vectors with“arrows”. The previous three vector properties can also
be expressed geometrically.

• Two vectors are equal if and only if they have the same length and point in the same direction.

• Given a vector u, the vector cu (for c 6= 0, and c ∈ R) is parallel to u, with length equal to |c| times
the length of u. Multiplying a vector by a negative scalar switches the direction that it points in.

• Given u,v ∈ R, the vector u+v can be found by using the usual parallelogram law (or tip-to-tail rule)
from calculus 3.

Now that we have the fundamentals refreshed, we can move onto one of the central topics of the course.

Definition 2.1.3. If u1,u2, . . . ,um ∈ Rn and c1, c2, . . . , cm ∈ R then the vector

c1u1 + c2u2 + · · ·+ cmum

is called a linear combination of u1,u2, . . . ,um.

Example 2.1.4. Given the vectors u1 =

[
1
2

]
and u2 =

[
5
−3

]
, three different linear combinations of u1 and

u2 are

u1 + u2 =

[
6
−1

]
,u1 − u2 =

[
−4
5

]
, 2u1 + 30u2 =

[
152
−86

]
A very important idea tied to linear combinations is finding when a given vector is a linear combination

of a fixed set of vectors.

Example 2.1.5. Let v1 =

 1
0
−2

 .v2 =

2
1
1

, and v3 =

 5
2
−1

 and determine if b =

19
7
−9

 is a linear

combination of v1,v2,v3.

When approaching a question like this one, starting the problem is often the hardest part. How in the
world can we figure this out? We figure it out by assuming it is true and following our nose until we arrive
at two possible outcomes. Either we find a solution and we are done or the system is inconsistent and we
see that there is no such linear combination. The starting point of this problem is the most important
thing we will learn this far.

If b is a linear combination of v1,v2,v3 then there exist scalars c1, c2, c3 ∈ R such that

c1

 1
0
−2

+ c2

2
1
1

+ c3

 5
2
−1

 =

19
7
−9


This is how we always approach these problems. We find values for the ci or realize that they cannot exist.
The way in which we find the ci is by unpacking what it means for two vectors to be equal. Using vector
addition on the left hand side of the equation we get that c1 + 2c2 + 5c3

c2 + 2c3
−2c1 + c2 − c3

 =

19
7
−9


10



which translates to the linear system


c1 + 2c2 + 5c3 = 19

c2 + 2c3 = 7

−2c1 + c2 − c3 = −9

We solve this linear system by solving the corresponding augmented matrix 1 2 5 19
0 1 2 7
−2 1 −1 −9

 ∼
1 0 0 2

0 1 0 −1
0 0 1 4


Note that all row reducing from now on will not be explicitly worked out. You are an expert row reducer
and you can work it out yourself!

Gauss-Jordan elimination here tells us that

(c1, c2, c3) = (2,−1, 4)

hence
b = 2v1 − v2 + 4v3

and we are done!

This example illustrated the best case scenario, that is, we wonder if a fixed vector is a linear combination
of some others, and we directly find the coefficients that give us the desired linear combination. If such a
linear combination does not exist, we unravel a different conclusion.

Example 2.1.6. Let v1 =

1
1
0

 ,v2 =

0
1
1

 ,v3 =

 2
1
−1

 , and b =

 1
3
−1

. Is b a linear combination of

v1,v2, and v3?

Just like we did in the previous example, we set up the corresponding linear system as if there did exist
such a linear combination. We then proceed by attempting to solve the linear system. In this case we get1 0 2 1

1 1 1 3
0 1 −1 1

 ∼
1 0 2 1

0 1 −1 2
0 0 0 −3


The equivalent matrix we have found represents an inconsistent linear system, therefore b is not a linear
combination of v1,v2, and v3

Before ending this section we make one last use of vector notation by expressing solution sets in terms
of linear combinations.

Example 2.1.7. Suppose we have the following linear system

{
4x1 − 2x2 + x3 − x4 = −5

x3 + x4 = 1

This linear system will have infinitely many solutions because there are two free variables. We can express
all such solutions in a compact way.

We first label the free variables, namely, x2 = t1 and x4 = t2. Then, using the second equation we get
that

x3 = 1− t2
Plugging all of this back into the first equation we see that

x1 =
−6 + 2t1 + 2t2

4
= −3

2
+

1

2
t1 +

1

2
t2
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We then express this general solution in vector form by grouping together free variables, that is
x1
x2
x3
x4

 =


3
2 + 1

2 t1 + 1
2 t2

t1
1− t2
t2

 =


− 3

2
0
1
0

+ t1


1
2
1
0
0

+ t2


1
2
0
−1
1


The expression of a solution set in terms of a linear combination of vectors is known as the general solution
in vector form.

2.2 Span

In this section we dig deeper into the question “Can we express one vector as a linear combination of others?”
Geometrically, this is the same as asking if we can travel to a point in space, by moving along fixed directions.
For example, suppose we were a little dot in R2, located at the origin, and we wanted to find a path to the
point (a, b) but we could only move along a line with slope 1 or slope zero, i.e. we can only move parallel
to the line y = x or horizontally. By translating this into the language of linear algebra, we are asking if the

point (a, b) can be expressed as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
.

Can we get to the point (5, 3)? Yes!

3u1 + 2u2 =

[
5
3

]
hence the vector

[
5
3

]
is a linear combination of u1 and u2.

Example 2.2.1. We can extend the question to an arbitrary point in R2. That is, can we express any

vector

[
a
b

]
(for a, b ∈ R) as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
? If we could, then there would

exist scalars x1, x2 ∈ R auch that [
a
b

]
= x1

[
1
1

]
+ x2

[
1
0

]
Finding such values of the xi is equivalent to solving the linear system with augmented matrix[

1 1 a
1 0 b

]
By performing Gauss-Jordan elimination we see that[

1 1 a
1 0 b

]
∼
[
1 1 a
0 −1 b− a

]
∼
[
1 1 a
0 1 a− b

]
∼
[
1 0 b
0 1 a− b

]
hence x1 = b and x2 = a− b. In other words[

a
b

]
= b

[
1
1

]
+ (a− b)

[
1
0

]

and we can write any vector in R2 as a linear combination of u1 =

[
1
1

]
and u2 =

[
1
0

]
. This example lends

itself to the central object of this section.

Definition 2.2.2. Suppose u1, . . . ,um ∈ Rn. The span of the vectors u1, . . . ,um denoted Span{u1, . . . ,um},
is the set of all linear combinations of u1, . . . ,um. In other words, Span{u1, . . . ,um} consists of all vectors
of the form

v = x1u1 + x2u2 + · · ·+ xmum
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for some scalars x1, x2, . . . , xn ∈ R.

If Span{u1, . . . ,um} = Rn we say that {u1, . . . ,um} spans Rn.

Note that in the above example we showed that Span
{[

1
1

]
,

[
1
0

]}
= R2 so

{[
1
1

]
,

[
1
0

]}
spans R2. Now

lets look at some more examples.

Example 2.2.3. Let u1 =

1
2
0

 ,u2 =

 2
−1
1

 and u3 =

4
0
1

. Show that {u1,u2,u3} spans R3.

Let v =

ab
c

 denote an arbitrary vector in R3. We need to show that there always exist scalars x1, x2, x3 ∈

R such that

x1

1
2
0

+ x2

 2
−1
1

+ x3

4
0
1

 =

ab
c


i.e. v is a linear combination u1,u2,u3.

In trying to solve the system corresponding to the vector equation above we see that1 2 4 a
2 −1 0 b
0 1 1 c

 ∼
1 2 4 a

0 −5 −8 b− 2a
0 1 1 c

 ∼
1 2 4 a

0 1 1 c
0 −5 −8 b− 2a


∼

1 2 4 a
0 1 1 c
0 0 −3 b− 2a+ 5c

 ∼
1 2 4 a

0 1 1 c
0 0 1 b−2a+5c

−3


From here we can use back subtitution and solce for x1, x2, and x3 which means that

ab
c

 ∈ Span{u1,u2,u3}

for every vector

ab
c

 ∈ R3. This precisely means that Span{u1,u2,u3} = R3.

Example 2.2.4. Let u1 =

1
1
1

 ,u2 =

 2
4
−3

 and v =

2
2
5

. Is v ∈ Span{u1,u2}?

We try to solve the vector equation x1u1 + x2u2 = v by looking at the augmented matrix
[
u1 u2 v

]
.1 2 2

1 4 2
1 −3 5

 ∼
1 2 2

0 2 0
0 −5 3

 ∼
1 2 2

0 1 0
0 −5 3

 ∼
1 2 2

0 1 0
0 0 3


The third line of the last equivalent matrix translates to the equation 0 = 3 hence the linear system is
inconsistent! This means there are no scalars x1, x2 ∈ R such that x1u1+x2u2 = v, hence v /∈ Span{u1,u2}.

To recap, we have seen three vectors that spanned R3 and two vectors that did not span R3. It turns
out that no two vectors in R3 will ever be able to span R3, we will actually need at least 3. Will any three

vectors span R3 or do we need to choose them more carefully? The next example tells us that we must
choose them more carefully.
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Example 2.2.5. Let u1 =

1
1
1

 ,u2 =

 2
4
−3

 and u3 =

 9
13
−1

. Is v =

 4
−2
3

 ∈ Span{u1,u2}?

Performing row operations reveals that1 2 9 4
1 4 13 −2
1 −3 −1 3

 ∼
1 2 9 4

0 1 2 −3
0 0 0 −16


This means that v =

 4
−2
3

 /∈ Span{u1,u2} hence any random set of three vectors will not always span R3.

We can drill down the needed specifications a bit more in the following proposition.

Proposition 2.2.6. Suppose u1, . . . ,um ∈ Rn.

• If m < n, then {u1, . . . ,um} does not span Rn.

• If m ≥ n, then {u1, . . . ,um} may or may not span Rn (we have seen that both cases are possible
when m = n.

This proposition prompts further investigation on how two spans are related. We will begin this inves-
tigation by proving another proposition, and before we do, we lay out some foundational ideas surrounding
proofs.

2.2.1 Some modern math techniques

We begin by recalling the definition of a span of a set of vectors. Given vectors u1,u2, . . . ,un the span of
these vectors, written as span(u1,u2, . . . ,un) is the set of all linear combinations of the vectors u1,u2, . . . ,un.

Tying this into what we mentioned above, we can see that the span of a set of vectors is a set! What
does it mean for something to be an element of this set? For this (and all other sets we encounter), being an
element of a given set means the element in question satisfies the definiton of what it means to be in that
set. Stated in the context of span, a vector v is in the span of u1,u2, . . . ,un, written as

v ∈ span(u1,u2, . . . ,un)

if v is a linear combination of the ui for i = 1, 2, . . . , n. Digging a little further, we can apply the definition
and write

If v ∈ span(u1,u2, . . . ,un), then there exist c1, . . . , cn such that

c1u1 + c2u2 + · · ·+ cnun = v

In proving things about spans, we will constantly come back to this definition, and in general. you should
remember that being an element of a set generally involves looking at the definition of what it means to be
in that set. This is a very common starting point for many proofs. It should help you get your mind moving
and prevent you from getting too stuck.

Some remarks on proofs

Although I don’t plan to discuss proofs very much in this course, there are several basic techniques that
you will be required to know. They are:
1) Knowing how to show that two sets are equal (in particular we will apply this to spans)
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2) The implications of what an “if and only if” statement means.

1) By definition, two sets, A and B, are equal if any element of A is also an element of B, and simi-
larly, every element of B is an element of A. If only one of these conditions holds, say every element of
A is an element of B, but not every element of B is an element of A, then we say A is a subset of B and
write A ⊂ B. Since a span of a set of vectors is a set, we will be interested in showing that two spans are equal.

The key idea is to take an arbitrary element of one set, and show it belongs to the other, then repeat the
process in the other direction. Using the notation above we can write out this process in a series of steps.

i) Pick an arbitrary element a ∈ A, and show that a ∈ B. This means that A ⊂ B.
ii) Pick an arbitrary element b ∈ B and show that b ∈ A. This shows that B ⊂ A.

To summarize, we have that A = B if and only if A ⊂ B and B ⊂ A. Now we explain a short bit about
if and only if statements, then illustrate the above proof method with an example.

2) For if and only if statements there is not much to know. The one take away is that you have 4 useful
statements that come out of it. If P and Q are two facts, say P is the fact that all cats are black and Q is
the fact that all dogs are brown, then P if and only if Q (also written as P ⇔ Q, or P iff Q) means that all
cats are black if and only if all dogs are brown. The 4 statements that we can get out of this come from
breaking down the statement into parts.

If we have that P if and only if Q, then this means that
i) If P is true then Q is true (also written as P =⇒ Q).
ii) If Q is true then P is true (also written as Q =⇒ P).
iii) If P is false, then Q is false.
iv) If Q is false, then P is false.

Note that the last two statements are the negation of the first two (if this confuses you then just ignore it).

One last thing worth mentioning is what it means if we have a series of statements A,B,C and there is a
theorem saying
The following are equivalent:
i) A
ii) B
iii) C

What does this mean? Well the statement “the following are equivalent” means that the statements that
follow can all be stated with if and only iff statements between them. The above example then reads as A if
and only if B if and only if C. We can pick apart these however we please, i.e. since A if and only if B, then
in particular, B implies A.

Taking an if and only if statement in the context of linear algebra, we can see how the four statements
can give us different results. Recall the following theorem:

Proposition 2.2.7. Let a1,a2, . . . ,an be vectors in Rn (we could also write a1,a2, . . . ,an ∈ Rn). Then the
following statements are equivalent:
i) b is in span{a1,a2, . . . ,an}
ii)The vector equation x1a1 + x2a2 + · · ·+ xnan has at least one solution.

Unpacking all of this we have that:

b ∈ span{a1,a2, . . . ,an} ⇔ x1a1 + x2a2 + · · ·+ xnan has at least one solution
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From this we get the four statements
i) If b ∈ span{a1,a2, . . . ,an} then x1a1 + x2a2 + · · ·+ xnan has at least one solution.

ii)If x1a1 + x2a2 + · · ·+ xnan has at least one solution, then b ∈ span{a1,a2, . . . ,an}.

iii)If b /∈ span{a1,a2, . . . ,an} (i.e. if the vector b is NOT in the span, then x1a1 + x2a2 + · · · +
xnan has NO solutions.

iv) If x1a1 + x2a2 + · · ·+ xnan has at NO solutions, then b /∈ span{a1,a2, . . . ,an}.

Now that we’re a bit more familiar with if and only if statements, let’s finish off with a concrete example
of a proof that the spans of two different sets of vectors are equal. Remember that spans of vectors are still
sets! This means that showing equality of spanning sets is done in the same way that we show equality of sets.

Example:

Prove that

span

{ 1
−2
3

 ,
 0

1
−1

} = span

{ 1
−2
3

 ,
 0

1
−1

 ,
1

0
1

}
To avoid writing the above vectors as much we let

v1 =

 1
−2
3

 v2 =

 0
1
−1

 v3 =

1
0
1


We begin by showing that

span{v1,v2} ⊂ span{v1,v2,v3}

Let x ∈ span{v1,v2}. This means that there exist scalars a1, a2 such that

x = a1v1 + a2v2 = a1

 1
−2
3

+ a2

 0
1
−1


This is the “unraveling the definition part”.

Now it will be super useful to remember that when we say linear combination, we can include 0 as a
scalar! This will prove to be a handy trick and in this context means that

x = a1

 1
−2
3

+ a2

 0
1
−1

+ 0

1
0
1

 = a1v1 + a2v2 + 0v3

So we just wrote x as a linear combination of v1,v2,v3! Thus, x ∈ span{v1,v2,v3} hence we have shown
that span{v1,v2} ⊂ span{v1,v2,v3}.

Now what remains to show is the other direction, namely that span{v1,v2,v3} ⊂ span{v1,v2} and we
apply the same procedure. Letting x ∈ span{v1,v2,v3} this means that there exist scalars b1, b2, b3 such
that

x = b1v1 + b2v2 + b3v3 = b1

 1
−2
3

+ b2

 0
1
−1

+ b3

1
0
1


Now, we need to show that x ∈ span{v1,v2} so how can we do this? Well, showing that v3 is a linear com-
bination of the other two will allow us to write x as a linear combo ONLY in v1 and v2. So lets try and do
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that. (You may see this method and think, “how in the world was I supposed to think of that?!”, but while
seeing it now may seem foreign, you will be doing this trick several times and it will seem less crazy each time).

We want to write v3 as a linear combo of v1 and v2, so lets take a look at what that linear combination
would look like. It would give us some scalars a1, a2 such that1

0
1

 = a1

 1
−2
3

+ a2

 0
1
−1


so all we need to do is FIND the scalars. We do this by looking at the components of each vector and

deducing what the scalars MUST be in order for the above equation to hold. Let’s zoom in on the first
components. For the above equality to hold, this must give us the equation

1 = a1 · 1 + a2 · 0 = a1

hence we need to hace a1 = 1. Now lets look at the second components, assuming we’ve found a1 this
reduces to the equation

0 = 1 · −2 + a2

hence a2 = 2. We can look at the third component and verify that indeed a1 = 1, a2 = 2 give us1
0
1

 =

 1
−2
3

+ 2

 0
1
−1


So we have the desired linear combo. Plugging this into the original linear combination that we started

with, we see that

x = b1v1 + b2v2 + b3v3 = b1

 1
−2
3

+ b2

 0
1
−1

+ b3

1
0
1


= b1

 1
−2
3

+ b2

 0
1
−1

+ b3

( 1
−2
3

+ 2

 0
1
−1

) = (b1 + b3)

 1
−2
3

+ (b2 + 2)

 0
1
−1


which we can now see is a linear combination of v1,v2! Thus x ∈ span{v1,v2} which now implies that

span

{ 1
−2
3

 ,
 0

1
−1

} = span

{ 1
−2
3

 ,
 0

1
−1

 ,
1

0
1

}
We now return to the main investigation concerning how two spanning sets can be related.

Proposition 2.2.8. If u ∈ Span{u1, . . . ,um} then Span{u1, . . . ,um,u} = Span{u1, . . . ,um}.

Proof. Recall what was mentioned about if-then statements and showing two sets are equal. Our goal will
be to show that the two sets Span{u1, . . . ,um,u} and Span{u1, . . . ,um} are equal. Our hypothesis is that
u ∈ Span{u1, . . . ,um} and we must use this somewhere along the way.

Let’s first assume that u ∈ Span{u1, . . . ,um}. This means that there exist scalars x1, x2, . . . , xm ∈ R
such that

u = x1u1 + · · ·+ xmum

Since we want to ultimately show that Span{u1, . . . ,um,u} = Span{u1, . . . ,um} we pick an arbitrary v ∈
Span{u1, . . . ,um,u} and show that it is also in Span{u1, . . . ,um}. This will show that Span{u1, . . . ,um,u} ⊆
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Span{u1, . . . ,um}. For this v that we have chosen, there must exist some other scalars y0, y1, . . . , ym ∈ R
such that

v = y0u + y1u1 + · · ·+ ymum

Now, we use our asssumption that u ∈ Span{u1, . . . ,um} and substitute u = x1u1 + · · · + xmum into the
equation for v. This tells us that

v = y0u+y1u1+· · ·+ymum = y0(x1u1+· · ·+xmum)+y1u1+· · ·+ymum = (y0x1+y1)u1+· · ·+(y0xm+ym)um

which is an element of Span{u1, . . . ,um}! This means that v ∈ Span{u1, . . . ,um} and

Span{u1, . . . ,um,u} ⊆ Span{u1, . . . ,um}

This shows the first part. It remains to show that Span{u1, . . . ,um} ⊆ Span{u1, . . . ,um,u} so we pick a
vector w ∈ Span{u1, . . . ,um} and conclude that it is also in Span{u1, . . . ,um,u}. The assumption on our
vector w implies that there exist scalars z1, z2, . . . , zm such that

w = z1u1 + · · ·+ zmum

Now, observe that 0 is a scalar that we can always use when constructing linear combinations, hence we can
write w as a linear combination of u1, . . . ,um,u by writing

w = 0u + z1u1 + · · ·+ zmum

hence w ∈ Span{u1, . . . ,um,u} and we can conclude that

Span{u1, . . . ,um} ⊆ Span{u1, . . . ,um,u}

This now means that
Span{u1, . . . ,um,u} = Span{u1, . . . ,um}

which completes the proof.

Before ending this section, we exhibit one more bit of compact (and very useful!) notation, namely that
of representing a linear system via matrix notation.

Let A be a matrix with columns a1 =

3
0
1

 ,a2 =

2
1
0

, and a3 =

−4
1
−5

. We can write the matrix A as

A =
[
a1 a2 a3

]
=

3 2 −4
0 1 1
1 0 −5



Let x =

x1x2
x3

, then we can define the following product.

Definition 2.2.9. The product Ax is given by

Ax =

3 2 −4
0 1 1
1 0 −5

x1x2
x3

 = x1

3
0
1

+ x2

2
1
0

+ x3

−4
1
−5

 = x1a1 + x2a2 + x3a3

This allows us to succinctly write out linear systems in terms of matrices as follows.
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Example 2.2.10. The linear system


3x1 + 2x2 − 4x3 = 1

x2 + x3 = 0

x1 − 5x3 = 2

has augmented matrix 3 2 −4 1
0 1 1 0
1 0 −5 2


Using the product definition above we can see that for a vector b =

1
0
2

 the above system can be written

as Ax = b for x =

x1x2
x3

.

We now end the section with (what we will soon see is) a very useful theorem. We note that any time
one says “the following are equivalent”, it means that “if and only if” statements should be placed between
every item in the list. That is to say, if one sentence in the list if true, all others are true, and likewise, if
one sentence is false then all others are false.

Theorem 2.2.11. Let u1, . . . ,um, b ∈ Rn.The following statements are equivalent:

1. b ∈ Span{u1, . . . ,um}.

2. The vector equation x1u1 + · · ·+ xmum = b has at least one solution.

3. The linear system with augmented matrix
[
u1 u2 · · · um b

]
is consistent.

4. The equation Ax = b with A =
[
u1 u1 · · · um

]
has at least one solution for every choice of

b ∈ Span{u1, . . . ,um}.

2.3 Linear Independence

The topic of linear independence will be precisely what we need to understand when a set of vectors spans
some euclidean space. In order to wrap our heads around it, we need one new definition.

Definition 2.3.1. A linear system if homogeneous if it has the form

x1a1 + x2 + a2 + · · ·+ xnan = 0

In other words, every linear equation is set equal to zero (the 0 denotes the zero vector, all of whose entries
are 0).

The beauty of a homogeneous linear system is that it is always consistent since we can always find the
solution x1 = x2 = · · · = xn = 0. We call this solution the trivial solution, any other solutions are referred
to as non-trivial solutions. It is this notion that allows us to define linear independence.

Definition 2.3.2. Suppose u1,u2, . . . ,um ∈ Rn. If the textbfonly solution to the linear system

x1u1 + x2u2 + · · ·+ xmum = 0

is the trivial solution, then we say {u1,u2, . . . ,um} is a linearly independent set of vectors, or that the
vectors are linearly independent. If the vector equation above has non-trivial solutions then {u1,u2, . . . ,um}
is a linearly dependent set of vectors. Recalling that a linear system either has 0, 1, or infinitely many
solutions, we can say that a set of vectors is linearly dependent if the associated homogeneous linear system
involving those vectors has at least one free variable. If this confuses you then feel free to ignore it.
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Example 2.3.3. Let u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

1
3
3

 ∈ R3. Is {u1,u2,u3} a linearly independent set

of vectors?

Considering the homogeneous linear system

x1u1 + x2u2 + x3u3 = 0

we can row reduce the corresponding augmented matrix 1 0 1 0
−1 2 3 0
1 −2 3 0

 ∼
1 0 1 0

0 1 2 0
0 0 6 0


Using back substitution we see that

x3 = 0 =⇒ x2 = 0 =⇒ x1 = 0

hence the only solution is the trivial one. This means that 1
−1
1

 ,
 0

2
−1

 ,
1

3
3


are linearly independent.

Example 2.3.4. Let u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

 4
2
−2

 ∈ R3. Are u1,u2,u3 linearly independent?

Considering the augmented matrix for the homogeneous linear system associated to the three vectors
above we have  1 0 4 0

−1 2 2 0
1 −2 −2 0

 ∼
1 0 4 0

0 1 3 0
0 0 0 0


This equivalent linear system has x3 as a free variable, and from this we obtain the non-trivial solution

x3 = t, x2 = −t, x2 = −4t

where t ∈ R. The existence of a non-trivial solution implies that

 1
−1
1

 ,
 0

2
−2

, and

 4
2
−2

 are linearly

dependent.

Now that we have a little bit of a feel for linear independence, let’s dig into some important propositions
that we may want to use in the future.

Proposition 2.3.5. If u1, . . . ,um ∈ Rn then {0,u1, . . . ,um} is always linearly dependent.

Proof. Given u1, . . . ,um ∈ Rn the equation x00 +x1u1 + · · ·+xmum = 0 always has the nontrivial solution
x0 = 1, x1 = 0, . . . , xm = 0.

We can actually say much more about when certain vectors are linearly dependent.

Proposition 2.3.6. If u1, . . . ,um ∈ Rn and m > n then {u1, . . . ,um} is linearly dependent.
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Proof. We begin by observing that the vector equation

x1u1 + · · ·+ xmum = 0

always has at least one solution (the trivial one). This means the if we set up the usual augmented matrix
and row reduce to a matrix B in echelon form, i.e.[

u1 u2 · · · um 0
]
∼ B

then the matrix B does not have any rows of the form
[
0 0 · · · 0 c

]
, where c 6= 0. Now, observing that

the number of components of each vector is n (this is what it means to say that ui ∈ Rn and that m > n,
we can conclude that there are more vectors than there are components of each vector. This means that
the corresponding augmented matrix has more columns than rows, hence there must be at least one free
variable, hence infinitely many (non-trivial) solutions, which completes the proof.

This Proposition will be a very important one moving forward so we will want to keep it in our toolbox.
Next, we get after a bigger question. How are the ideas of span and linear independence related? The answer
as we will soon see, is quite nice, especially when phrased in terms of pivots. Recall that a pivot position in
a matrix is a coefficient that sits in front of what would be a leading variable, in the corresponding linear
system. We now give three relationships between these two ideas, and prove the third statement in detail.

Proposition 2.3.7. Let u1, . . . ,um ∈ Rn and suppose A =
[
u1 · · · um

]
∼ B where B is a matrix in

echelon form.

1. Span{u1, . . . ,um} = Rn exactly when B has a pivot in every row.

2. {u1, . . . ,um} is linearly independent exactly when B has a pivot in every column.

This proposition is a personal favorite of many. It essentially gives an algorithm for determining when a
given set of vectors span Rn and/or are linearly indepdnent. The question of spanning is a question about
pivots of rows and the question of independence is a question about pivots of columns. All one needs to do
before checking rows and/or columns, is put the given vectors as the columns of a matrix and row reduce to
echelon form.

The last relationship is the following theorem.

Theorem 2.3.8. Let {u1, . . . ,um} be a set of vector in Rn. This set is linearly dependent if and only if one
of the vectors in the set is in the span of the others.

Proof. As with any “if and only if” proof, we must show both directions of the statement, We begin by
assuming that the given vectors are linearly dependent, then deduce that one of the vectors is in the span of
the others. This is the forward direction of the proof and is indicated with “→”. After proving this direction,
we tackle the reverse direction, denoted by “←”, where we assume that one of the vectors is in the span of
the others, and conclude linear dependence.

→
Suppose {u1, . . . ,um} is linearly dependent. Then the vector equation x1u1 + · · · + xmum = 0 has a non-
trivial solution, which we call (x1, . . . , xm). Note that this solution being non-trivial means that at least
one of the xi is non-zero (so we can divide by it!). Without loss of generality, lets assume that x1 6= 0.
Using the vector equation above, we can then solve for u1

x1u1 + · · ·+ xmum = 0 =⇒ x1u1 = −(x2u2 + · · ·+ xmum) =⇒ u1 =
−(x2u2 + · · ·+ xmum)

x1

hence u1 ∈ Span{u2, . . . ,um}.
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←

Now assume that one of the vectors (say u1) is a linear combination of the others. Then there exist
scalars c2, . . . , cm such that

u1 = c2u2 + · · ·+ cmum hence u1 − c2u2 − · · · − cmum = 0

so we have a non-trivial solution to the equation x1u1 + · · ·+xmum = 0, which is exactly what it means for
the vectors u1, . . . ,um to be linearly dependent.

Example 2.3.9. One can show that the set {
[

1
−1

]
,

[
10
9

]
,

[
−4
17

]
} is linearly dependent (this is a good

exercise), hence the above theorem implies that one of them is a linear combination of the others. In fact,
we have [

−4
17

]
=
−206

19

[
1
−1

]
+

13

19

[
10
9

]
Warning: This does not mean that every vector is a linear combination of the others. An easy example of

this is {
[
1
0

]
,

[
2
0

]
,

[
0
1

]
}. Can you see which vectors are not in the span of the others?

We end the chapter with what is arguably the most important theorem of linear algebra which we refer
to it as the big theorem. It is given as a list of equivalent statements and we will add to the list throughout
the course. The key thing to note about the big theorem is that its statements are only true if we have n
vectors in Rn. In most of the statements of propositions we have m vectors in Rn and we do not assume that
m and n are the same. This is something you should always be aware of if you try to use the big theorem
to solve a problem.

Theorem 2.3.10. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
. The following

statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

We end the chapter with an example question that would be impossible to solve without the big theorem.

Example 2.3.11. Let A =
[
u1 u2 u3

]
for u1 =

 1
−1
1

 ,u2 =

 0
2
−2

 ,u3 =

1
3
3

, and show that Ax = b

has a solution for every b ∈ R3.

By the big theorem, Ax = b has a solution for every b ∈ R3 if and only if the three vectors are linearly
independent. This was shown in Example 2.3.3, hence the question is true by the big theorem.
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Chapter 3

Linear Transformations

Up to this point, we have done a tremendous amount of algebra with vectors and matrices, but we have not
examined the geometry underlying linear systems. As we will soon see, the notion of a linear transformation
allows us to translate our algebraic notions into geometric ones. Often times in practice, we aim to answer
hard geometric questions and the methods we use involve translating the geometry into an algebraic question
involving matrices, then using the matrices to answer the question, and translating the answer back to the
underlying geometric picture.

3.1 The Basics of Linear Maps

We begin by outlining the basic vocabulary of linear transformations, otherwise known as linear maps. A
priori, a linear map is just a function that takes vectors as input and outputs vectors (of possibly different
size than the input). The notation

T : Rm → Rn

reads as “T is a function from Rm to Rn”.

• The set Rm is the domain of T (and T must be defined for every element of Rm).

• The set Rn is the codomain of T . It is the set where all the output vectors live.

• The subset of Rn consisting of all output vectors, that is, all vectors of the form w = T (x) for some
x ∈ Rm is known as the Range of T , denoted Range(T ). It is also often called the image of T .

The following picture can serve as a visual summary of these definitions
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Before defining what a linear map is, let’s look at an example of a vector valued function.

Example 3.1.1. Let T : R3 → R2 be defined by

T
(x1x2

x3

) =

[
x1x2
x2 − x3

]

The domain of this map is R3 and the codomain is R2. The vector

[
2
1

]
is in Range(T ) because T

(1
2
3

) =

[
2
1

]
Definition 3.1.2. A function T : Rm → Rn is a linear transformation or linear map if, for every
u,v ∈ Rm and every scalar r ∈ R, we have:

• T (u + v) = T (u) + T (v).

• T (ru) = rT (u)

Some people like to combine the two conditions of linearity by saying that T is a linear transformation if

T (ru + sv) = rT (u) + sT (v)

for all vectors u,v ∈ Rm and all scalars r, s ∈ R.

Example 3.1.3. Let’s show that the map T : R2 → R3 defined by

T
([x1
x2

])
=

 −x2x1 + x2
4x1


is a linear map.

Let u =

[
u1
u2

]
and v =

[
v1
v2

]
be arbitrary vectors in the domain (R2). Then u + v =

[
u1 + v1
u2 + v2

]
hence

T (u + v) =

 −(u1 + v1)
(u1 + v1) + (u2 + v2)

4(u1 + v1)

 =

 −u2u1 + u2
4u1

+

 −v2v1 + v2
4v1

 = T (u) + T (v)

Moreover, if r ∈ R then ru =

[
ru1
ru2

]
and

T (ru) =

 −ru2
ru1 + ru2

4ru1

 = r

 −u2u1 + u2
4u1

 = rT (u)

hence T is indeed a linear transformation.

Example 3.1.4. Let T : R3 → R2 be the map defined earlier by

T
(x1x2

x3

) =

[
x1x2
x2 − x3

]
This is not a linear map since, for example, if r = 2 then

T (2x) =

[
4x1x2

2(x2 − x3)

]
6= 2T (x) =

[
2x1x2

2(x2 − x3)

]
One way to see why this is not a linear map is that the first coordinate of an arbitrary output vector is a
quadratic function in the input variables. In general, linear maps have coordinate functions that are linear.
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One of the most amazing things about linear maps is that they are intimately tied to matrices.

Definition 3.1.5. A matrix with n rows and m columns has dimensions n ×m and is referred to as an
n×m matrix. An n× n matrix is often called a square matrix.

Now, by recalling Definition 2.2.9 (the product Ax) we can see the connection with matrices and linear
maps. If A is an n×m matrix and x ∈ Rm then the product Ax is always a vector in Rm (you should verify
this for yourself). In other words, an n ×m matrix, when multiplied by a vector in x ∈ Rm, takes x to a
vector Ax, in Rn.

Theorem 3.1.6. Let A be an n×m matrix and define T : Rm × Rn via

T (x) = Ax

then T is a linear transformation.

The above theorem is powerful and can be used to easily show that a given map is linear, without verifying
the two properties of the original definition. That is, to show that a function T : Rm → Rn is a linear map,
it suffices to find a matrix A such that T (x) = Ax.

Example 3.1.7. Consider the linear map from Example 3.1.3, which we now know is indeed linear. Using
Definition 2.2.9 we have

T (x) =

 0x1 − x2
x1 + x2

4x1 + 0x2

 = x1

0
1
4

+ x2

−1
1
0

 =

0 −1
1 1
4 0

[x1
x2

]

so T (x) = Ax for A =

0 −1
1 1
4 0

 and by the above theorem, T is a linear map.

Continuing with this example, let w =

10
5
2

. Is w ∈ Range(T )? That is, does there exist a vector

x ∈ R2 such that T (x) = w. Since T (x) = Ax, the existence of such a vector x would imply that Ax = w
so to find the vector x we need to solve the system Ax = w which has augmented matrix0 −1 10

1 1 5
4 0 2

 ∼
1 1 5

0 1 −10
0 0 −58


hence w 6∈ Range(T ) because there does not exist a vector x with T (x) = w. This is an example of a linear
map that is not onto, which leads us to our next set of definitions.

Definition 3.1.8. Let T : Rm → Rn be a linear transformation.

1. T is one-to-one if for each w ∈ Rn, there is at most one vector x ∈ Rm such that T (x) = w. In
other words, every domain vector x goes to exactly one vector in the codomain. It is not possible for
one-to-one maps to send two different vectors to the same one. This would be “two-to-one”.

2. T is onto if for every w ∈ Rn, there is at least one vector x ∈ Rm such that T (x) = w. In other words,
T is onto if every vector in the codomain is mapped to by some vector in the domain.

Less formally, T is one-to-one if nothing in the codomain gets “hit” more than once, and T is onto if
everything in the codomain gets “hit”.
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All possibilities involving these definitions are most easily understood through these helpful pictures.
Now let’s get familiar with these concepts through examples.

Example 3.1.9. Let A =

[
1 −2
−2 4

]
with T : R2 → R2 defined by T (x) = Ax. We have

T
([

1
−2

])
=

[
1 −2
−2 4

] [
1
−2

]
=

[
5
−10

]
and T

([−3
−4

])
=

[
1 −2
−2 4

] [
−3
−4

]
=

[
5
−10

]
which means that T is not one-to-one. Moreover, (exercise) T is not onto since there is no x ∈ R2 with

T (x) =

[
1
3

]
.

Example 3.1.10. Let A =

2 0
1 −1
0 0

 with T : R2 → R3 given by T (x) = Ax. Is T onto?

If it were, then for any vector w =

ab
c

 ∈ R3 we could always find a vector x ∈ R2 such that T (x) =

Ax = w. Solving the associated linear system in the usual way we get that2 0 a
1 −1 b
0 0 c

 ∼
1 −1 b

0 2 a− 2b
0 0 c


which corresponds to a linear system whose third equation is 0 = c. Now, if w was a vector with non-zero
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third coordinate, then w /∈ Range(T ) by what we have stated above. For example,

0
0
1

 /∈ Range(T ) whereas1
1
0

 ∈ Range(T ).

Example 3.1.11. Let A =

[
2 0
0 4

]
with T : R2 → R2 given by T (x) = Ax. In coordinates, we have

T
([x1
x2

])
=

[
2x1
4x2

]
. If w =

[
a
b

]
then T (x) = w has exactly one solution, namely x =

[
a/2
b/4

]
. There are no

other vectors that get mapped to w =

[
a
b

]
. This means that every vector gets “hit” and there is exactly

one x such that T (x) = w for any w, hence T is both one-to-one and onto.

There is an alternative definition of one-to-one that some may find useful.

Definition 3.1.12. T is one-to-one if

T (u) = T (v) implies u = v

Continuing along with the notion of a one-to-one map, we have one essential property of a linear map,
that closely ties into being one-to-one.

If T : Rm → Rn is a linear transformation, then T (0) = 0.

Theorem 3.1.13. Let T : Rm → Rn be a linear map. T is one-to-one if and only if the equation T (x) = 0
has only the trivial solution x = 0. That is, if T (x) = 0, we must have x = 0.

Proof. If T (x) = 0 has only the trivial solution, then by the alternative definition of one-to-one, we can
conclude that if T (u) = T (v) then T (u) − T (v) = 0. Moreover, since T is linear, we have T (u) − T (v) =
T (u− v) hence T (u− v) = 0. THe trivial solution here implies that u = v = 0, thus we must have u = v,
implying that T is indeed one-to-one.

In practice, when checking if a linear map is one-to-one, this theorem is the easiest method to use.
In general, the following theorem outlines some other useful methods of checking when linear maps are
one-to-one or onto.

Proposition 3.1.14. Let A be an n×m matrix and define T : Rm → Rn via T (x) = Ax. Then

1. T is one-to-one if and only if the columns of A are linearly independent.

2. If m > n, then T is never one-to-one.

3. T is onto if and only if the columns of A span Rn (the codomain).

4. If m < n, then T is never onto.

In practice, you should always try to use statements 2 and 4 from the proposition, they are super useful!

Next, let’s illustrate the last proposition with an example.

Example 3.1.15. Let A =

2 0
0 1
3 −3

 with T : R2 → R3 given by T (x) = Ax. Since m < n we know

immediately that T is not onto, but it could be one-to-one. To find out if it is, we look at the equation
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T (x) = Ax = 0. This is a linear system which reduces via2 0 0
0 1 0
3 −3 0

 ∼
1 0 0

0 1 0
0 0 0


hence only the trivial solution exists and we must have x = 0 =

[
0
0

]
. We can then conclude, by the theorem

we just proved, that T is one-to-one.

Now we have seen quite a few linear maps in action. Every one that we have seen was given by some
matrix so it is natural to ask if all linear maps are given by matrices. The emphatic answer is yes!

Theorem 3.1.16. If T : Rm → Rn is a linear transformation, then there exists an n ×m matrix A such
that T (x) = Ax.

This means that we can always find the matrix associated to a linear map (and we should!). Working
with linear maps is always easier when working with their associated matrices and because of this, we move
interchangeably between linear maps and matrices from here on out. When you think of a matrix you shoudl
always be thinking about what it does as a linear transformation.

The beauty of this thoerem extends further. In fact, given any linear map, we can always find its
assoctaed matrix fairly easily.

Example 3.1.17. Let T : R3 → R5 be given by

T
(x1x2

x3

) =


x3 − x1
x2 + x3

4x1 + 3x2
x1 − 5x3

9x2


Lets find the matrix for T .

Let

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


We call these the standard basis vectors of the domain. If the domain is Rm then there are m of these
vectors. The general rule is that the formula for A is

A =
[
T (e1) T (e2) T (e3)

]

so by using the coordinate definition of T we have that T (e1) =


−1
0
4
1
0

 , T (e2) =


0
1
3
0
9

 , T (e3) =


1
1
0
−5
0

 hence

A =


−1 0 1
0 1 1
4 3 0
1 0 −5
0 9 0


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This formula is our new best friend is is extremely useful. Let’s summarize how this works in general.

Proposition 3.1.18. Let T : Rm → Rn be a linear transformation. Then T (x) = Ax with A an n × m
matrix given by

A =
[
T (e1) T (e2) · · · T (em)

]
Last but not least, we use results from this section to add to the big theorem.

Theorem 3.1.19. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

An interesting consequence of this, in stark contrast to Proposition 3.1.14, is that a linear map from Rn
to itself is either one-to-one and onto, or neither.

3.2 Matrix Algebra

In continuing with our geometric theme, the tools of matrix algebra provide the algebraic notions that we
will use to answer geometric questions concerning multiple linear transformations.

The first notion we need is matrix addition. This is done component-wise, in a way that is similar to
vectors.

Example 3.2.1. Let A =

[
4 0 −1
2 2 5

]
and B =

[
9 10 6
−1 0 −1

]
. We define A+B to be the 2× 3 matrix

A+B =

[
13 10 5
1 2 4

]
Note that we obtained this matrix just by adding matching coordinates of each matrix. For a given scalar
r ∈ R we define rA to be

rA =

[
4r 0 −r
2r 2r 5r

]
In general, there are just several things to note about matrix addition.

1. One can only add matrices of the same size. That is, if C is a 2 × 3 matrix and D is a 3 × 4 matrix
then C +D is undefined.

2. We denote the zero matrix with n rows and m columns by 0nm, or simply write 0 when the context is
clear. The zero matrix satisfies the property that 0 + A = A for any matrix A where the addition is
defined.

3. Matrix addition is commutative, that is, A+B = B +A.

We now move onto the slightly more complicated (but also more important) notion of matrix multipli-
cation. This can be thought of as a generalization of multiplying a matrix by a vector.
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Definition 3.2.2. If A is an n × k matrix and B is a k × m matrix, written column-wise as B =[
b1 b2 · · · bm

]
then the product AB is the n×m matrix given by

AB =
[
Ab1 Ab2 · · · Abm

]
where each column Abi is computed using Definition 2.2.9.

Example 3.2.3. Let A =

[
4 0 −1
2 2 5

]
and B =

−2 1 2 0
6 0 −3 −1
7 −1 4 1

. Then

AB =

[
4 0 −1
2 2 5

]−2 1 2 0
6 0 −3 −1
7 −1 4 1



= A

−2
6
7

+A

 1
0
−1

+A

 2
−3
4

+A

 0
1
−1

 =

[
−15 5 4 −1
43 −3 18 3

]
This can be taken to be the original definition of matrix multiplication, but in practice, there is a much

easier way of computing it.

Given an n × k matrix A and a k ×m matrix B, the product AB is the n ×m matrix, whose ij-entry
(the entry in row i column j) is the dot product of the ith row of A with the jth column of B. It would
be a great exercise to run back through the example above using this method. In doing so, you should also
see why the product is not defined when the number of columns of A does not equal the number of rows of B.

Warning: In general, the order in which one multiplies matrices matters. With the example above, even
though AB is defined, BA is not. Always exercise care with the order in which you multiply matrices.

It is now a good time to introduce some special types of matrices that we will encounter more frequently
as well as some useful ideas that come from our new perspective of matrices. We begin with two definitions,
then lay out some special classes of matrices.

Definition 3.2.4. The transpose of an m × n matrix A, denoted A>, is the m × n matrix obtained by

interchanging the rows and columns of A. For example, if A =

[
3 0 1
4 1 −2

]
then A> =

3 4
0 1
1 −1

. The main

properties of transposing matrices is that the transpose of a product is the product of transposes (with order
swapped), that is

(AB)> = B>A>

Definition 3.2.5. Given a square matrix A, we define the kth power of A to be the matrix Ak. That is,
the matrix obtained by multiplying A by itself k times. For example, A2 = AA and A3 = A(A2) = AAA.

• The n× n identity Matrix, In: Considering (again) the standard basis vectors for Rn,

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

, the n× n identity matrix is given by

In =
[
e1 e2 · · · en

]
In is the unique matrix for which AIn = InA = A for any n× n matrix A.
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To see some small examples, we have

I2 =

[
1 0
0 1

]
and I3 =

1 0 0
0 1 0
0 0 1


• Diagonal Matrices: If the only non-zero entries of a square matrix A lie on thh main diagonal, then

we call A a diagonal matrix. For example,

A =


2 0 0 0
0 4 0 0
0 0 0 0
0 0 0 6


and we can check that

A2 =


4 0 0 0
0 16 0 0
0 0 0 0
0 0 0 36

 and A3 =


8 0 0 0
0 64 0 0
0 0 0 0
0 0 0 216


In general, if

A =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

 then Ak =


ak11 0 . . . 0
0 ak22 . . . 0
...

...
. . .

...
0 0 . . . aknn


• Triangular Matrix: If A is a square matrix with zeroes in each entry below the main diagonal, then
A is an upper triangular matrix. We can similarly define a lower triangular matrix to have zeroes
below the main diagonal. If A is either upper or lower triangular, then we say that A is a triangular
matrix. For example, given the two matrices

A =

1 2 2
0 4 5
0 0 6

 B =

1 0 0
0 5 0
4 4 4


we have that A is upper triangular and B is lower triangular.

Expanding on what we said for diagonal matrices, we have the (great) fact.

Proposition 3.2.6. If A is a triangular matrix, then Ak is triangular.

Note that what was said about powers of diagonal matrices follows from this Proposition because all
diagonal matrices are triangular.

We now outline some things that we need to be very careful about, when it comes to matrices and
products of them. These are things that you will want to always keep in mind when computing matrix
products.

1. In general, if AB is defined, the product BA is not defined. This is always the case if A or B are not
square matrices and can be seen in the previous example.

2. The commutative property does not hold for matrix multiplication. For example,[
1 2
3 −4

] [
1 2
−3 4

]
=

[
−1 8
15 −10

]
6=
[

1 2
−3 4

] [
1 2
3 −4

]

31



3. Unlike with numbers, it is possible to multiply two non-zero matrices together and obtain the zero
matrix. For example, [

1 1
1 1

] [
2 3
−2 −3

]
=

[
0 0
0 0

]
The takeaway from this is that if AB = 0 we cannot conclude that either A = 0 or B = 0.

4. Its possible that AC = BC but A 6= B and C 6= 0. For example,[
2 3
6 −2

] [
1 1
1 1

]
=

[
1 4
2 2

] [
1 1
1 1

]
=

[
5 5
4 4

]
The takeaway from this is that if AC = BC and C 6= 0 then we cannot conclude that A = B.

We now end the section with what is arguably the most important aspect of matrix multiplication.

Proposition 3.2.7. Let T1 : Rm → Rk be given by T1(x) = A1x and let T2 : Rk → Rn be given by T2(x) =
A2x. The matrix associated to the composition T2 ◦T1(x) = T2(T1(x)) is A2A1, that is, matrix multiplication
corresponds to composition of associated linear maps.

Proof. We can quickly verify that

T2 ◦ T1(x) = T2(T1(x)) = T2(A1x) = A2A1x

Example 3.2.8. Let T1, T2 : R2 → R2 be given by T1(x) = A1x and T2(x) = A2x with

A1 =

[
1 2
−3 4

]
and A2 =

[
2 1
3 −2

]

If x =

[
1
−1

]
then we can compute T1(T2(x)). First observe that

T2(x) =

[
2 1
3 −2

] [
1
−1

]
=

[
1
7

]
Now we have

T1(T2(x)) =

[
1 2
−3 4

] [
1
7

]
=

[
15
25

]
We can also verify that

A1A2 =

[
8 −7
6 −19

]
which means that T1(T2(x)) =

[
8 −7
6 −19

] [
1
−1

]
. A direct computation indeed yields the desired result.

As a last note, we emphasize that the order of matrix multiplication is an essential component of com-
puting a composition of linear maps correctly. In practice, always make sure that the order in which you
multiply is correct.
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3.3 Inverses

We now come to the last topic of this chapter, the all important idea of an inverse. We will see that the
notion of an inverse will correspond to the same notion of an inverse function. They will also make solving
certain linear systems much easier.

Definition 3.3.1. If A is an n × n matrix and there exists another n × n matrix, A−1 (pronounced A
inverse), satisfying

A−1A = AA−1 = In

then A is invertible and we say A−1 is the inverse of A.

Example 3.3.2. Let A =

[
1 −1
3 2

]
. We can see that A is invertible and A−1 =

[
2/5 1/5
−3/5 1/5

]
since an easy

computation shows that A−1A = AA−1 = I2.

Going along the lines of the example, we actually have a nice closed formula for the inverse of a 2 × 2

matrix (larger matrices do not have such nice formulas). Given A =

[
a b
c d

]
, if ad − bc 6= 0 then A is

invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
Our main task in this section will be to compute inverses for n × n matrices where n > 2. The process

is as follows:

Suppose we are given the n× n matrix A =
[
a1 a2 · · · an

]
. To find A−1 (if it exists) we

1. Augment A with the n× n identity matrix In =
[
e1 e2 · · · en

]
to get[

a1 a2 · · · an e1 e2 · · · en
]

2. Reduce the left hand side (the matrix A) to reduced echelon form and apply the same row operations
to In.

3. If this algorithm can be completed, the right hand side of the augmented matrix will be A−1. That is[
A In

]
∼
[
In A−1

]
Example 3.3.3. Find A−1 if A =

−1 4 1
1 0 1
2 0 1

. By applying all the necessary row operations we get

−1 4 1 1 0 0
1 0 1 0 1 0
2 0 1 0 0 1

 ∼
1 −4 −1 −1 0 0

0 4 2 1 1 0
0 8 3 2 0 1

 ∼
1 −4 −1 −1 0 0

0 1 1/2 1/4 1/4 0
0 8 3 2 0 1



∼

1 −4 −1 −1 0 0
0 1 1/2 1/4 1/4 0
0 0 1 0 2 −1

 ∼
1 −4 0 −1 2 −1

0 1 0 1/4 −3/4 1/2
0 0 1 0 2 −1

 ∼
1 0 0 0 −1 1

0 1 0 1/4 −3/4 1/2
0 0 1 0 2 −1


hence A−1 =

 0 −1 1
1/4 −3/4 1/2
0 2 −1

.

Definition 3.3.4. An n× n matrix A is non-singular if it has an inverse, otherwise we say it is singular.
It is also important to note that if A−1 exists, it is unique.
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Inverses also relate nicely to linear transformations.

Definition 3.3.5. If T : Rn → Rn is a linear transformation that is one-to-one and onto then T is invertible.
Its inverse is the function T−1 : Rn → Rn with the property that for each x ∈ Rn we have T−1(T (x)) = x.
In fact, if T is given by T (x) = Ax, then if T is invertible, we always have T−1(x) = A−1x.

Example 3.3.6. Let T : R2 → R2 be given by T
([
x1
x2

])
=

[
4x1 + 3x2
−6x1 + 5x2

]
so that T (x) = Ax with A =[

4 3
−6 5

]
. Using the formula for the inverse of a 2× 2 matrix, we have that

A−1 =
1

38

[
5 −3
6 4

]
We can then verify that

T−1
(
T
([x1
x2

]))
= T−1

([ 4 3
−6 5

] [
x1
x2

])
=
( 1

38

[
5 −3
6 4

] [
4 3
−6 5

] [
x1
x2

])
=

[
x1
x2

]
Now that we have a bit of a handle of inverses of matrices, we can return to the algebraic mishaps of

last section, and see that invertibility was indeed the solution we needed to make sense of when matrix
multiplication behaves like regular multiplication of numbers.

Proposition 3.3.7. Suppose A and B are non-singular n× n matrices and C and D are n×m matrices.
Then

1. A−1 is invertible with inverse (A−1)−1 = A.

2. AB is invertible and (AB)−1 = B−1A−1 This is known as the shoes and socks lemma. If B represents
putting on your socks and A represents putting on your shoes, then undoing this process translates to
first taking off your shoes (A−1), then taking off your socks (B−1).

3. If AC = AD, then C = D. We can obtain this logically by taking the first equation and multiplying on
the left by A−1 on both sides.

4. If AC = Onm then C = 0nm. This can similarly be obtained by multiplying both sides by A−1 on the
left.

It is essential to note here that invertibility of A is precisely what gives us the ability to draw all the
conclusions we have made. Without invertibility of A, we cannot deduce any of the four statements.

We can now add some more results to the big theorem (which some refer to as the invertible matrix
theorem).

Theorem 3.3.8. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.
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We now end the section with one illustration of why we love invertible matrices.

Example 3.3.9. Consider the linear system{
4x1 + 3x2 = 5

−2x1 − x2 = 7

This system is the same as Ax = b for A =

[
4 3
−2 −1

]
and b =

[
5
7

]
. Moreover, A is invertible with

inverse given by A−1 =

[
−1/2 −3/2

1 2

]
. Note that we found this matrix by using the formua for 2 × 2

matrices. Looking at the matrix equation Ax = b, we can see that isolating x is equivalent to multiplying
both sides by A−1 on the left, hence

A−1Ax = A−1b =⇒ x = A−1b

and

A−1b =

[
−1/2 −3/2

1 2

] [
5
7

]
=

[
−13
19

]
= x

which uniquely solves the system.
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Chapter 4

Basis and Subspaces

We now enter the second half of the topics list for this course, the first of which is subspaces. The language
of subspaces gives us precise notions that allow one to describe things like planes and lines in R3 in greater
generality. Once we have the basics of subspaces, we will define the all important notion of a basis, which
will also lead us to the definition of dimension. We then take an in depth look at some of the most important
subspaces related to a matrix, namely the column space and null space. We then finish the chapter with a
description of change of basis, a central theme in all of linear algebra.

4.1 Subspaces

Definition 4.1.1. A subset S of Rn is a subspace of Rn is vectors in S satisfy the three following conditions:

1. 0 ∈ S.

2. If u,v ∈ S, then u + v ∈ S. This is known as closure under addition.

3. If r ∈ R and u ∈ S then ru ∈ S. This is known as closure under scaling.

It is worth noting that the first condition introduces the necessary condition that no two parallel subspaces
can ever exist.

Example 4.1.2. Let u1,u2 ∈ Rn and S = Span{u1,u2}. Is S a subspace of Rn?

We must verify each of the three conditions for S to be a subspace.

1. 0 ∈ S because 0 = 0u1 + 0u2.

2. Elements of S are closed under addition. Let u = c1u1 + c2u2 and v = d1u2 + d2u2. Clearly both of
these are arbitrary elements of S. By adding them together we see that

u + v = (c1 + d1)u1 + (c2 + d2)u2 ∈ S

which shows that the second condition is met.

3. If r ∈ R and u = c1u1 + c2u2 ∈ S, then

ru = rc1u1 + rc2u2 ∈ S

which shows that the third condition is met. We can now conclude that S is a subspace.

In general, the span of any set of vectors in Rn is always a subspace of Rn. This can easily be seen by
reworking the above example with arbitrarily many vectors. This is such a fundamental fact that we state
it as a theorem, which may be freely used from here on out.
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Theorem 4.1.3. If u1, . . . ,um ∈ Rn, then Span{u1, . . . ,um} is a subspace of Rn.

Example 4.1.4. Let S be the set of solutions of the linear system{
5x2 + 5x2 = 10

x2 + x2 = 5

Is S a subspace of R2?

NO! The easiest way to see this is by verifying that the first subspace condition is broken, That is, 0 =

[
0
0

]
/∈ S

because it is not a solution to the non-homogeneous set of equations which define S.

Example 4.1.5. Let S be a subset of vectors in R3 consisting of the vectors

ab
c

 such that ab = 0. It turns

out that S is not a subspace of R3 because S is not closed under addition. For example, the vectors u =

1
0
1


and v =

0
1
1

 are both in S (condition that ab = 0 is satisfied) but

u + v =

1
1
2


and a = b = 1 so ab 6= 0, which means that u,v ∈ S but u + v /∈ S.

We now introduce one of the fundamental subspaces associated to a matrix.

Theorem 4.1.6. Let A be an n ×m matrix. If S is the set of solutions of the homogeneous linear system
Ax = 0, then S is a subspace of Rm.

Proof. First, we can see that A0 = 0 for any matrix A, hence 0 ∈ S. Moreover, if Au = 0 and Av = 0
(meaning u,v ∈ S), then u + v ∈ S because

A(u + v) = Au +Av = 0 + 0 = 0

Finally, we can also see that ru ∈ S for any u ∈ S. By assuming that Au = 0 (since u ∈ S) we have that
for any scalar r ∈ R

A(ru) = rAu = r(0) = 0

This shows that S is a subspace.

Definition 4.1.7. If A is an n×m matrix, then the set of all solutions to the homogeneous linear system
Ax = 0 is called the null space of A. It is denoted Null(A) and is a subspace of Rm. In other words

Null(A) =
{

x ∈ Rm : Ax = 0
}

Example 4.1.8. Find the null space of A =

[
1 −1 0
2 4 3

]
.

37



The procedure for finding the null space of a matrix is always the same. We begin by augmenting with
the zero vector and row reducing. [

1 −1 0 0
2 4 3 0

]
∼
[
1 −1 0 0
0 1 1/2 0

]
Looking at the echelon matrix, we can see that x3 is a free variable so we set x3 = t. Using back substitution
from here get the general solution x1x2

x3

 =

− 1
2 t
− 1

2 t
t

 = t

−1/2
−1/2

1


which means that

Null(A) = Span
{−1/2
−1/2

1

}
In general, one may encounter a situation where they have to determine if a given set is a subspace. Here

are some helpful tips to carry out this task successfully:

1. Check if 0 ∈ S. If not, then S is not a subspace.

2. If you can find specific vectors whose span is preciesly equal to S, then you can leverage Theorem
4.1.3 to argue that S is a subspace.

3. Recognize that S can in fact be expressed as the null space of some matrix and leverage Theorem
4.1.6 to show that S is a subspace (this method is powerful if you can get good at using it). As

an example, consider the set of vectors of the form

ab
c

 such that a − b = −c. The condition that

a− b = −c is equivalent to a− b+ c = 0. This set of vectors is then the solution set of the linear system
x1 − x2 + x3 = 0 which can be expressed as Null(A) where A =

[
1 −1 1

]
. Note that in general, if

you can algebraically manipulate something to obtain a zero somewhere, you are probably looking at
a null space in disguise.

4. If all else fails, show closure under addition and scaling directly. If you encounter a road block in trying
to prove this, it may mean that S is not a subspace. If you suspect this is the case, you should then
seek out a counterexample. Either two vectors in S whose sum is not in S, or a fixed vector and fixed
scalar which break closure under scaling.

We end this section by investigating how this relates to linear maps.

Definition 4.1.9. Let T : Rm → Rn be a linear transformation. The set of all vectors x ∈ Rm such that
T (x) = 0 is called the kernel of T and is denoted ker(T ).

Theorem 4.1.10. If T : Rm → Rn is a linear transformation, then ker(T ) is a subspace of Rm and Range(T )
is a subspace of Rn (recall that Range(T ) = {y ∈ Rn : T (x) = y for some ∈ Rm}.

Proof. The proof of this is very instructive and will be useful for the remainder of the course.

Since T is a linear transformation, we know that there exists a matrix A such that T (x) = Ax. This
means that if T (x) = 0 then Ax = 0 hence ker(T ) and Null(A) are the same! By Theorem 4.1.6 we can
conclude that ker(T ) is a subspace. Similarly by recalling the formula of Definition 2.2.9, we can see that

Range(T ) = Span{a1, . . . ,am}

where A =
[
a1 · · · an

]
(Remember this fact!). It then follows from Theorem 4.1.3 that Range(T ) is a

subspace.
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Tracing back to the results of the previous chapter, we now have a nice new fact.

Proposition 4.1.11. Let T : Rm → Rn be a linear transformation. T is one-to-one if and only if ker(T ) =
{0}.

We now end the section by adding to the big theorem.

Theorem 4.1.12. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

4.2 Basis and Dimension

We saw in the previous section that spans of any number of vectors always forms a subspace. From this
fact, we can ask the question, is every subspace the span of some set of vectors? The answer to this is yes!
Moreover, we can go one step further and ask wether or not we can find the smallest set of vectors that span
a given subspace. It is the notion of a basis that stems from this idea.

Definition 4.2.1. Let S be a subspace of Rn. A basis for S is a set of vectors BS = {u1, . . . ,um} that
spans S and is linearly independent.

Example 4.2.2. Let S = Span
{[1

2

]
,

[
−3
−6

]
,

[
10
20

]}
. We can observe that

[
−3
−6

]
= −3

[
1
2

]
and

[
10
20

]
=

10

[
1
2

]
, hence, we can see that the spanning vectors for S are linearly dependent. Based on the definition for

a basis, this means that the given vectors are not a basis. Moreover, along the lines of Proposition 2.2.8, we
have that

Span
{[

1
2

]
,

[
−3
−6

]
,

[
10
20

]}
= Span

{[
1
2

]
}

Since
{[1

2

]}
spans S and is linearly independent, we have that BS =

{[1
2

]}
forms a basis for S.

Example 4.2.3. Let

u1 =

1
0
0

 ,u2 =

0
1
1

 ,u3 =

1
1
1

 , and u4 =

1
2
2


and let S = Span{u1,u2,u3,u4}. We can observe that u3 = u1 + u2 and u4 = u1 + 2u2 hence S =
Span{u1,u2}. Since {u1,u2} is linearly independent, we can conclude that {u1,u2} is a basis for S.

Example 4.2.4. Consider the zero vector 0 ∈ Rn. The zero subspace S = {0} is the only subspace of Rn
that has no basis. It consists of the origin and nothing else.
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A task that will arise again and again is that of finding a basis for a given subspace. There are two ways
of doing this and we break down each ”recipe”. Both have their advantages depending on the context in
which you want to find a basis. In both cases, assume S = Span{u1, . . . ,un}.

1. Recipe 1:

• Form a matrix A whose ROWS are the vectors u1, . . . ,un.

• Use row reductions to transform A to an echelon matrix B.

• The non-zero rows of B form a basis for S.

Example 4.2.5. Let u1 =


1
−2
3
−2

 ,u2 =


1
1
−1
0

 , and u3 =


3
−3
5
4

 and suppose S = Span{u1,u2,u3}.

Then

A =

1 −2 3 −2
1 1 −1 0
3 −3 5 −4

 ∼
1 −2 3 −2

0 3 −4 2
0 0 0 0

 = B

The non-zero rows of B form a basis for S hence BS =
{
−1
−2
3
−2

 ,


0
3
−4
2

} is a basis for S.

2. Recipe 2:

• Form a matrix A whose COLUMNS are the vectors u1, . . . ,un.

• Use row reductions to transform A to an echelon matrix B.

• The columns of A that correspond to the pivot columns of B form a basis for S.

Example 4.2.6. Let u1 =


1
−2
3
−2

 ,u2 =


1
1
−1
0

 , and u3 =


3
−3
5
4

 and suppose S = Span{u1,u2,u3}.

Then

A =


1 1 3
−2 1 −3
3 −1 5
−2 0 −4

 ∼


1 1 3
0 3 3
0 0 0
0 0 0

 = B

The pivot columns of B are columns 1 and 2 hence our basis for S is

BS =
{

1
−2
3
−2

 ,


1
1
−1
0

}

As a general rule, one should always remember that both recipes always work but recipe 1 tends to give
“simpler” basis vectors (with more zeroes) whereas recipe 2 always gives basis vectors that are a subset of
the vectors you started with. It is very common to want to reduce a spanning set to a basis (known as
reducing to a basis), and this makes recipe 2 especially useful in many scenarios.
We can now use the notion of a basis to define dimension. The first fundamental fact that we need is the
following.

40



Proposition 4.2.7. If S is a subspace of Rn, then every basis of S has the same number of vectors in it.

Definition 4.2.8. The dimension of a subspace S, denoted dim(S), is the number of vectors in any basis
for S. Note that in the previous example, we had dim(S) = 2. In general, we always have dim({0}) = 0.

Example 4.2.9. If S is a subspace of R3, what are the possible values of dim(S)?

• S could be the zero subspace, in which case dim(S) = 0.

• S could be a line through the origin in which case it has the form S = Span{u1} for u1 6= 0 and
dim(S) = 1.

• S could be a plane through the origin in which case it has the form S = Span{u1,u2} for u1,u2 linearly
independent. In this case we have dim(S) = 2.

• S could be all of R3, which we could write as

R3 = Span
{1

0
0

 ,
0

1
0

 ,
0

0
1

}
We call {e1, e2, e3} the standard basis of R3. In this case, dim(S) = 3 and in general, this is the
only 3-dimensional subspace of R3.

This completes our list because any subspace S = Span{u1, . . . ,um} where m > 3 can never be m dimen-
sional. This follows from the fact that any set of m > 3 vectors in R3 is never linearly independent, hence
we can never have a basis containing more than 3 vectors.

Let’s illustrate all of these ideas on some more complex examples.

Example 4.2.10. Find a basis for R4 containing the vectors

u1 =


1
0
2
0

 and u2 =


2
2
1
1


We know that BR4 = {e1, e2, e3, e4} is a basis for R4 and since u1,u2 ∈ Span{e1, e2, e3, e4} we know (by
Proposition 2.2.8) that

R4 = Span{e1, e2, e3, e4} = Span{u1,u2, e1, e2, e3, e4}

We can then apply recipe 2, placing u1 and u2 as the left-most vectors. Upon row reducing we get that

A =


1 2 1 0 0 0
0 2 0 1 0 0
2 1 0 0 1 0
0 1 0 0 0 1

 ∼


1 2 1 0 0 0
0 1 0 0 0 1
0 0 −2 0 1 3
0 0 0 1 0 −2

 = B

The pivots columns of B are columns 1, 2, 3, and 4 hence

BR4 =
{

1
0
2
0

 ,


2
2
1
1

 ,


1
0
0
0

 ,


0
1
0
0

}

is a basis for R4 containing the prescribed vectors.
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Next, let’s up the difficulty a little bit and find a basis for a new but increasingly familiar subspace.

Example 4.2.11. Let A =

1 −1 1 0
0 1 −2 3
2 −1 0 3

 and compute dim(Null(A)).

We first need to find Null(A) which involves solving the linear system Ax = 0. We see that1 −1 1 0 0
0 1 −2 3 0
2 −1 0 3 0

 ∼
1 −1 1 0 0

0 1 −2 3 0
0 0 0 0 0


We have 2 free variables so we set x3 = t and x4 = s. Then, by back substitution, we get x2 = 2t− 3s and
x1 = t− 2s hence

x =


x1
x2
x3
x4

 = t


1
2
1
0

+ s


−3
−3
0
1


It then follows immediately that

BNull(A) =
{

1
2
1
0

 ,

−3
−3
0
1

}

is a basis for Null(A) and we can conclude that dim(Null(A)) = 2. This procedure for finding a basis always
works because the free variables will always contribute a 1 to one entry of a basis vector and a 0 to the
corresponding entries of all other vectors. The offset 0’s and 1’s always ensure linear independence of the
spanning vectors that we find, hence a basis is obtained automatically.

This number is so important that it has its own name.

Definition 4.2.12. The nullity of a matrix A, denoted nullity(A), is the number dim(Null(A)).

We will have much more to say about this numerical invariant in the next section, but before ending this
section, we add to the big theorem once more.

Theorem 4.2.13. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.
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4.3 Row Space, Column Space, and Rank

We now introduce several more fundamental subspaces associated to a matrix. Once we have these additional
definitions, we state the all important Rank-Nullity theorem, sometimes known as the fundemantal theorem
of linear algebra. This theorem allows us to “decompose” Rn into disjoint subspaces.

Definition 4.3.1. Let A be an n×m matrix.

• The row space of A is the subspace of Rm spanned by the row vectors of A. It is denoted row(A).

• The column space of A is the subspace of Rn spanned by the columns of A. It is denoted col(A) and
is the set of all outputs of the form Ax or alternatively, just the span of the columns of A.

Combining these definition with our “recipes” from the last section we can deduce that given any matrix
A ∼ B with B in echelon form

• The non-zero rows of B form a basis for row(A).

• The columns of A corresponding to the pivot columns of B form a basis for col(A).

Example 4.3.2.

A =

 1 2 1 −1
0 1 1 0
−1 5 3 0

 ∼
1 2 1 −2

0 1 1 0
0 0 0 1

 = B

Using the recipes, we can see that

Brow(A) =
{

1
2
1
−1

 ,


0
1
1
0

 ,


0
0
0
1

} and Bcol(A) =
{ 1

0
−1

 ,
2

1
5

 ,
−1

0
0

}

You may notice in this example that the row space and column space have the same dimension, even
though one of them is a subspace of R4 and the other one is a subspace of R3. It turns out this phenomenon
is always true.

Theorem 4.3.3. Given any matrix A we have

dim(Row(A)) = dim(Col(A))

Proof. Let B be a matrix in echelon form that is row equivalent to A. Every non-zero row of B contains a
pivot and similarly, the pivot in each pivot column must lie in one of these non-zero rows. This means that
the number of non-zero rows of B must equal the number of pivot columns of B. The number of pivot rows
(resp. columns) is precisely what we use to find bases of these subspaces, hence these numbers always being
equal impllies that row(A) and col(A) must always have the same dimension.

This new numerical invariant also has its own name.

Definition 4.3.4. The rank of a matrix A, denoted rank(A), is the dimension of the row, or column, space
of A. In the above example we have rank(A) = 3 and we say that the matrix A has rank 3.

We now have everything we need to state what is, without question, the most amazing and useful theorem
in this course, known most commonly as the rank-nullity theorem.

Theorem 4.3.5. If A is an n×m matrix then

rank(A) + Nullity(A) = m
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Proof. If A is an n ×m matrix, and A ∼ B, then the number of non-zero rows of B is the rank of A by
definition. This is also equal to the number of pivot columns of B. Each non-pivot column will correspond
to a free variable and each free variable corresponds to a basis vector for Null(A) (think about how we did
this in Example 4.2.11). Putting this all together we have that
rank(A) = the number of pivot columns of B
and
Nullity(A) = the number of non-pivot columns of B.
The total number of columns of B, which is equal to m, is then the sum of the rank(A) and Nullity(A).

The power of this theorem pops up again and again but at this stage, we can already find it useful in
doing routine computations. In particular, if you want to find the rank or nullity of a matrix, you only need
to find one and you get the other for free. This allows you to apply the “find a basis for the null space”
procedure of Example 4.2.11 to find the nullity, or, apply your favorite recipe to find the rank, then the other
numerical invariant follows immediately from rank-nullity.

Example 4.3.6. Consider the following matrix, and an equivalent echelon form

A =

 1 2 1 −1
0 1 1 0
−1 5 3 0

 ∼
1 2 1 −2

0 1 1 0
0 0 0 1

 = B

We saw in the previous example that rank(A) = 3 so we immediately know that this matrix has nullity equal

to 1. You should verify this for yourself and in doing so will see, that
{

5/3
1/3
−1/3

1

} is a basis for Null(A).

We can also relate this theorem to linear transformations. Recall that given a linear transformation
T : Rm → Rn with associated matrix A, we deduced that the span of the columns of A was equal to the
range. If this does not ring a bell, take a look at Definition 2.2.9. With our new terminology, this means
that Col(A) = Range(T ). Moreover, the solution set of Ax = 0 consisted of the vectors x such that
T (x) = 0. In other words, we had ker(T ) = Null(A). This means that rank(A) = dim(Range(T )) and
Nullity(A) = dim(ker(T )). This is a dense paragraph but is worth spending the time to understand every
sentence.

Combining these geometric notions with the rank-nullity theorem we can see that

m = dim(Range(T ) + dim(ker(T ))

It is worth noting that the dimension of the row space being equal to rank(A) and the dimension of the null
space being equal to Nullity(A) says something significant about Rm. Both the row space and null space of
A are subspaces of Rm, whose dimensions add up to m. It is rank-nullity that allows us to conclude that
Rm “decomposes” into the row space and the null space of the given matrix. This would not be possible to
understand without our notions of linear maps and the rank-nullity theorem.

We now finish the section with one more example, followed by one more addition to the big theorem.

Example 4.3.7. Let T : R11 → R9 be given by T (x) = Ax and further assume that T is onto. How many
dimensions of R11 are occupied by ker(T )?

Since T is onto, we know that its range is the entire codomain, that is, Range(T ) = R9. This means that
dim(Range(T )) = dim(Col(A)) = rank(A) = 9. Rank-nullity then implies that

11 = 9 + dim(ker(T ))

hence dim(ker(T )) = 2.
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Theorem 4.3.8. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

This is quite a bit of information so we breifly summarize the main ideas in the following list:

• Null(A) = {x ∈ Rm : Ax = 0} = {x ∈ Rm : T (x) = 0} = ker(T ).

• Col(A) = span of columns of A = Range(T ).

• dim(Col(A)) = dim(Row(A)) = rank(A).

• dim(Null(A)) = Nullity(A).

• If T : Rm → Rn then Null(A) ⊂ Rm, Row(A) ⊂ Rm, and Col(A) ⊂ Rn.
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4.4 Change of Basis

We now encounter the all important idea surrounding changing a basis. This can be one of the trickiest
concepts to understand, but the hard work will pay off. Reading this section several times over may be
helpful in gaining a full understanding and when in doubt, do more examples!

Let’s first address notation. Let x =

[
3
−2

]
∈ R2 be written in the standard basis. The coordinates of x

are expressing its geometric location in the plane. That is, to arrive at the tip of the vector x, you move 3
units to the right of the origin (3 units along e1) and −2 units down from there (−2 units along e2). This
is because

x = 3e1 − 2e2

The coefficients of x in this expression involving the standard basis are what determine its coordinates. This
is the general idea behind change of basis.

Example 4.4.1. Let B =
{[2

7

]
,

[
1
4

]}
be a (non-standard) basis of R2, In this basis we can express the

same vector x as

x = 14

[
2
7

]
− 25

[
1
4

]
and we express this notationally as

[x]B =

[
14
−25

]
With this idea in mind, we can now define this notion in greater generality.

Definition 4.4.2. Let B = {u1,u2, . . . ,un} be a basis for Rn and let

y = a1u1 + a2u2 + · · ·+ anun

then the coordinate vector of y with respect to the basis B is

[y]B =


a1
a2
...
an


Let U =

[
u1 u2 · · · un

]
∈ Rn×n. We call U the change of basis matrix for the basis B (note that

is has the basis vectors as it’s columns). If y is taken to be a vector written in the standard basis, then

U [y]B =
[
u1 · · · un

] a1...
an

 = a1u1 + a2u2 + · · ·+ anun = y

Example 4.4.3. Let

B =
{ 1

3
−2

 ,
2

0
1

 ,
4

5
1

}

be a basis for R3 and let [x]B =

−2
3
1

. Find x with respect to the standard basis for R3.
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Given the basis B, our change of basis matrix is

U =

 1 2 4
3 0 5
−2 1 1


so we can find x via

x = U [x]B =

 1 2 4
3 0 5
−2 1 1

−2
3
1

 =

 8
−1
8


Note that U took a vector from the non-standard basis to the standard basis.

A natural question one can ask is, how can we go the other direction? That is, if we are given a vector,
written in the standard basis, how can we find its representation in some other non-standard basis?

The key is to look at the equation we get from the change of basis matrix, namely

x = U [x]B

We can see that U is always invertible (by the big theorem) because it’s columns form a basis, hence we
can take the above equation and multiply both sides by U−1 on the left to obtain

U−1x = [x]B

We summarize in the following proposition.

Proposition 4.4.4. Let x be expressed in the standard basis with B = {u1, . . . ,um} a non-standard basis
for Rn. If U =

[
u1 · · · un

]
is the change of basis matrix for the basis B then

U [x]B = x and [x]B = U−1x

Example 4.4.5. Continuing from example 4.4.1, we have B =
{[2

7

]
,

[
1
4

]}
and x =

[
3
−2

]
. Going from the

standard basis to this one we see that

[x]B =

[
14
−25

]
=

[
2 1
7 4

]−1 [
3
−2

]
In words, the proposition is saying that U takes a vector from the non-standard basis to the standard

basis, and its inverse does the opposite.

What remains is to find a fluid way to go from one non-standard basis to another. The short solution is
to “go through the standard basis” but this requires some explination.

Let B1 = {u1, . . . ,um} and B2 = {v1, . . . ,vn} be non-standard bases for Rn. We aim to find a matrix
that takes [x]B1

as input, and outputs [x]B2
. Let Bst denote the standard basis for Rn. We carry out the

task in two steps

1. Go from [x]B1
to [x]Bst

.

2. Go from [x]Bst
to [x]B2

.

We use matrix multiplication to combine the steps.
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Theorem 4.4.6. Let B1 = {u1, . . . ,um} and B2 = {v1, . . . , vn} be non-standard bases for Rn with change
of basis matrices given by U =

[
u1 · · · un

]
and V =

[
v1 · · · vn

]
respectively. Then

[x]B2
= V −1U [x]B1

and
[x]B1

= U−1V [x]B2

Proof. We know that U and V are change of basis matrices, hence by Proposition 4.4.4 we know that

x = U [x]B1 and [x]B2 = V −1x

Note here that we are writing x to mean [x]Bst
(this is standard convention). Combining these two equations

we see that
[x]B2 = V −1x = V −1(U [x]B1) = V −1U [x]B1

This means that the change of basis matrix from B1 to B2 is V −1U . By taking inverses and using the shoes
and socks lemma, we get the second result.

We end this chapter with an illustration of this entire idea. The whole of change of basis can be summa-
rized in the following picture.
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Chapter 5

Determinants

The determinant can be thought of as a useful number that we can associate with a fixed matrix. In
particular, viewing it as a function, it takes an n × n matrix as input and outputs a real number. In this
chapter we will begin by discussing ways to compute the determinant of a matrix, and once we have the
basics down, we will see how it can be used.

5.1 The Determinant Function

We can compute the determinant of n× n matrices, for small n, quite easily.

1. n = 1: If A = [a11] then det(A) = a11.

2. n = 2: If A =

[
a11 a12
a21 a22

]
then det(A) = a11a22 − a12a21.

3. n = 3: If A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 then

det(A) = a11 det
([a22 a23
a32 a33

])
− a12 det

([a21 a23
a31 a33

])
+ a13 det

([a21 a22
a31 a32

])
The following definition is very formal and can be quite complicated to understand. The best way to get

a grasp on it is to do LOTS of examples! Starting with a 3×3 matrix is the best place to begin. For practice

(after reading the definition), compute the determinant of A =

1 2 3
1 −1 4
5 6 2

 and verify that the final answer

is 43.

Definition 5.1.1. Let A be an n× n matrix given by

(aij) =

a11 a12 · · · a1n
...

... · · ·
...

an1 an2 · · · ann


Note that writing a matrix as (aij) is common compact matrix notation, which denotes that the entry in
row i and column j is the real number aij .
For n = 2, . . . , n, let Mij be that (n− 1)× (n− 1) matrix obtained by removing the ith row and jth column
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of A. The minor of aij is the real number det(Mij). The cofactor of aij is Cij = (−1)i+j det(Mij).
The determinant of A is then the scalar

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

= a1jC1j + a2jC2j + · · ·+ anjCnj

where i and j can be any fixed values from 1 up to n. Note that the first equation is known as the cofactor
expansion along the ith row, and the second equation is known as the cofactor expansion along the
jth column.

The profound fact concerning computation of determinants is the following.

Theorem 5.1.2. Given any n×n matrix A, the value of det(A) obtained by performing a cofactor expansion
along the ith row or jth column is always the same.

The main consequence of this theorem is that, when computing the determinant of a matrix, we can seek
out the least labor intensive method possible. In practice, this involves finding the row or column of the
given matrix that has the most zeroes, and computing a cofactor expansion along that row or column. This
is always the least computationally expensive method.

Example 5.1.3. Compute the determinant of

A =


1 2 2 4
1 0 0 3
5 6 0 7
3 1 0 8


Observe that the third column of A has the most zeroes. Moreover, if we compute the cofactor expansion
along the 3rd column, we will only need to compute one minor explicitly (as opposed to as many as 4!).

det(A) = 2 det
(1 0 3

5 6 7
3 1 8

) = 2
(

1 · det
([6 7

1 8

])
+ 3 · det

([5 6
3 1

]))
= 4

5.2 Properties of the Determinant

One other way in which we can compute a determinant is to row reduce the given matrix and track how the
determinant changes at each step. We do so according to the following proposition.

Proposition 5.2.1. Suppose B is an n×n matrix obtained by performing one of the following row operations
on A. The determinant of B and A are related as follows:

1. Switch two rows of A to get B =⇒ det(B) = −det(A).

2. Multiply a row of A by a non-zero constant c to get B =⇒ det(B) = cdet(A).

3. Add a multiple of one row to another to get B =⇒ det(B) = det(A).

This Proposition implies the following shortcuts:

• If A has a row or column of zeroes then det(A) = 0.

• If A has a two identical rows then det(A) = 0.

We also add one more useful trick in computing determinants of triangular matrices.
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Proposition 5.2.2. If A is a triangular matrox, then det(A) is the product of the diagonal entries of A.

Proof. You can do this one yourself! Try drawing an arbitrary 3 × 3 upper triangular matrix (with entries
labeled aij), then compute the determinant by doing a cofactor expansion along the first column or third
row.

A nice (but sort of obvious) corollary of this is the following.

Corollary 5.2.3. det(In) = 1

We now end this chapter with arguably the most useful and important theorems concerning determinants.

Theorem 5.2.4. Let A be an n× n matrix. Then A is invertible if and only if det(A) 6= 0.

Proof. We know that here exists a sequence of row operations taking A to B, where B is in reduced echelon
form. This means that every row of B contains a pivot, or the main diagonal has at least one 0 entry. Since
B is triangular and A ∼ B, we know that det(A) = cdet(B) for some non-zero scalar c. Based on both
possibilities for the diagonal entries, we can conclude that if A was invertible, then every column of B is a
pivot column so the product of the diagonal entries must be non-zero. If there is a non-pivot column, then
there must be a zero entry on the diagonal, hence det(B) = 0.

The second useful fact concerns the determinant of a product.

Proposition 5.2.5. If A and B are n× n matrices, then

det(AB) = det(A) det(B)

The third useful fact, is that when A is invertible, we have a nice explicit form for the determinant of
A−1.

Proposition 5.2.6. If A is invertible, then

det(A−1) =
1

det(A)

Proof. Invertibility of A implies that A−1 exists and satisfies the equation AA−1 = In. Taking determinants
of both sides and using properties of determinants (which ones?) we conclude that

det(AA−1) = det(In) =⇒ det(A) det(A−1) = 1 =⇒ det(A−1) =
1

det(A)

Before ending the chapter with an addition to the big theorem, we add several interesting notes on how
the determinant relates to geometry and area.

Proposition 5.2.7. Let S denote the unit square in R2 and let T : R2 → R2 be a linear map with associated
matrix A. If P = T (S) denotes the image of the unit square under T , then we have Area(P ) = |det(A)|.

This means that if det(A) = 1, the associated linear transformation preserves area. An example of this
is rotation. Building on this, we have a similar result in higher dimensions.

Proposition 5.2.8. Let D be a region of finite volume in Rn and suppose T : Rn → Rn is a linear map with
associated matrix A. If T (D) denotes the image of D under T , then Volume(T (D)) = |det(A)|· Volume(D).

We now end with an updated (and very powerful!) big theorem.
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Theorem 5.2.9. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

11. det(A) 6= 0.
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Chapter 6

Eigenvalues and Diagonalization

All of our hard work thus far will finally pay off in this chapter. Much of linear algebra past this point
is centered around the idea of eigenvalues and eigenvectors and it is certainly something you will want to
remember for future classes in any stem field..

6.1 Eigenvalues and Eigenvectors

Let’s quickly recall the basics of the geometry of linear transformations. Given a linear map T : R2 → R2

given by T (x) = Ax, for some 2 × 2 matrix A, we can plug in any vector x ∈ R2 and T will output a
new vector Ax with a (potentially different) direction and length. The idea of eigenvalues and eigenvectors
investigates when the direction and/or length of the output vector is related to the input vector.

Definition 6.1.1. Let A be an n × n matrix. If u is a non-zero vector and λ ∈ R is a scalar such that
Au = λu, then λ is an eigenvalue of A and u is an eigenvector of A associated with eigenvalue λ.

There are a few fundamental facts concerning eigenvectors that will allow us to gain extra structure on
the set of all eigenvectors associated to some fixed eigenvalue. The first is that the sum of two eigenvectors
associated to the same eigenvalue is another (different!) eigenvector associated to the same eigenvalue (you
should verify this for yourself). We also have a related result.

Proposition 6.1.2. Suppose A is a square matrix and λ is an eigenvalue of A with associated eigenvector
u, that is, Au = λu. Then for any non-zero scalar c, we have that cu is en eigenvector of A associated to λ.

Proof. If Au = λu then A being linear implies that for any c ∈ R

A(cu) = cAu = cλu = λ(cu)

hence cu is en eigenvector of A associated to eigenvalue λ.

Combining the last two facts, we obtain the notion of eigenspaces.

Definition 6.1.3. Let A be an n× n matrix with eigenvalue λ. The set S consisting of the zero vector and
all eigenvectors of A associated with λ forms a subspace of Rn known as the eigenspace associated to
eigenvalue λ, often denoted by Eλ.

Example 6.1.4. Let A =

[
6 −2
5 −1

]
. One can check that if u =

[
1
1

]
and v =

[
2
5

]
then Au = 4u and Av = v.

This means that u is an eigenvector of A of eigenvalue 4 and v is an eigenvector of A with eigenvalue 1. It
follows (by reasons we will soon see) that the eigenspace of eigenvalue 4 is

E4 = Span
{[

1
1

]}
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and the eigenspace of eigenvalue 1 is

E1 = Span
{[

2
5

]}
What we need moving forward is a streamlined way to find eigenvalues and a basis for each associated

eigenspace, when given an arbitrary matrix A. What follows is the reasoning behind how we find eigenvalues.

If we have an eigenvalue/eigenvector pair so that Au = λu for some vector u and scalar λ, then we can
obtain the closely related equation

Au− λu = 0

By rewriting u as Iu, where I is the n × n identity matrix, the above equation can be more compactly
written as

(A− λI)u = 0

Note that λI =

λ . . .

λ

 and if u =

u1...
un

 then

λIu =

λ . . .

λ


u1...
un

 =

λu1...
λun

 = λu

so the expression A−λI does indeed make sense. With this equation being understood, we can now classify
how one finds eigenvalues of a matrix.

Proposition 6.1.5. Let A be an n × n matrix. A scalar λ ∈ R is an eigenvalue of A if and only if
det(A− λI) = 0.

Proof. Summarizing what was said above, we have that λ is an eigenvalue of A if and only if Au = λu for
some vector u 6= 0 if and only if Au − λIu = 0 if and only if (A − λI)u = 0. This means that λ is an
eigenvalue of A if and only if the homogeneous equation (A− λI)u = 0 has a non-trivial solution, and this
is true if and only if A− λI is not invertible (by the big theorem). It follows that A− λI is not invertible
if and only if det(A− λI) = 0 which completes the proof.

The heart of our method lies in this proof. We will soon see that det(A − λI) is a polynomial in the
variable λ (note that λ is merely a placeholder at first and the values of λ that satisfy det(A−λI) = 0 are the
eigenvalues of A). Looking more closely at the polynomial det(A− λI) = 0, we will see that the eigenvalues
of A are the roots of this polynomial. The above proposition then takes the task of finding eigenvalues to
the task of finding roots of a polynomial. In general we call det(A − λI) the characteristic polynomial
of A.

Example 6.1.6. Let A =

[
1 1
2 0

]
. Find the eigenvalues and a basis for each eigenspace.

We first see that

A− λI =

[
1 1
2 0

]
−
[
λ 0
0 λ

]
=

[
1− λ 1

2 −λ

]
and

det(A− λI) = (1− λ)(−λ)− 2 = λ2 − λ− 2 = (λ− 2)(λ+ 1)

We need the solutions to det(A− λI) = 0 and these are the solutions to (λ− 2)(λ+ 1) = 0 hence λ = 2 and
λ = −1 are the eigenvalues of A. It is worth noting that no other scalars are eigenvalues of A, these two are
the only ones. To find bases for the eigenspaces, we then only need to find the vectors u and v respectively,
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that satisfy Au = 2u and Av = −v.

If Ax = λx for some eigenvalue λ, then x satisfies the equation (A − λI)x = 0. In other words, all the
eigenvectors with eigenvalue λ are precisely the vectors in Null(A− λI)! This means that the eigenspace for
eigenvalue λ is the same thing as Null(A− λI). That is

Eλ = Null(A− λI)

We can now find a basis for E−1. We need to find a basis for Null(A − λI) with λ = −1 so we plug in
λ = −1 to A− λI and we get

A+ I =

[
2 1
2 1

]
We see that all vectors in the null space of this matrix are of the form t

[
−1
2

]
for some free variable t, hence

the basis for E−1 is
{[−1

2

]}
. We leave the computation of a basis for E2 to the reader as practice. The

answer you should get is

BE2 =
{[

1
1

]}
Next, we outline so shortcuts that can be used in finding eigenvalues of simple types of matrices.

Example 6.1.7. Find the eigenvalues of the triangular matrix

A =


1 2 0 1
0 1 0 1
0 0 2 0
0 0 0 2


By computing the characteristic polynomial of A we see that

Det(A− λI) = det
(

1− λ 2 0 1
0 1− λ 0 1
0 0 2− λ 0
0 0 0 2− λ

)

Recalling that the determinant of a triangular matrix is the product of the diagonal entries, it follows that

det(A− λI) = (1− λ)2(2− λ)2

Looking back at the matrix A, we can see that the eigenvalues of A are exactly the diagonal entries. This is
in fact true for eigenvalues of all triangular matrices.

Next, let’s find bases for the eigenspaces E1 and E2, using some shortcuts along the way.

To compute a basis for E1, we need to find a basis for Null(A− I) which is

A− I =


0 2 0 1
0 0 0 1
0 0 1 0
0 0 0 1


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We can see that this matrix has three pivot columns hence rank(A− I) = 3. By rank-nullity this means its
null space is 1 dimensional, hence is of the form Span{x} for some non-zero vector x ∈ R4. Since the first

column of A− I is the zero vector, this means that A− I sends e1 to


0
0
0
0

 hence

BE1
=
{

1
0
0
0

}

As an exercise, we leave the computation of a basis for E2 to the reader, but to check your work you
should get

B2 =
{

0
0
1
0

 ,


3
1
0
1

}
No tricks to doing this one, just compute the correct null space in the usual way.

Looking back at the example above, we can see that one of the eigenspaces was one-dimensional while
the other one was two dimensional. This is a phenomenon that is subtle and requires a bit more discussion.

The first thing to note is that if A is an n × n matrix, then the characteristic polynomial det(A − λI)
is always a degree n polynomial. The concept we will need to understand further is that of (algebraic)
multiplicity of a root of a polynomial, which we now define.

Definition 6.1.8. Let P (x) denote a polynomial of degree n, in the variable x, and suppose P (x) is the
characteristic polynomial of some matrix A. If we can factor this polynomial as

P (x) = (x− α)mQ(x)

where Q(α) 6= 0, then we say x = α is an eigenvalue of A with multiplicity m. In other words, the exponent
attached to the linear term of a polynomial is the multiplicity we associate to the root of that polynomial
that comes from the given linear term.

This notion of multiplicity is precisely what we need to say more about dimensions of eigenspaces.

Theorem 6.1.9. Let λ be an eigenvalue of a matrix A and let m(λ) denote the multiplicity of the eigenvalue
λ. Then we always have

dimEλ ≤ m(λ)

That is, the dimension of the eigenspace for eigenvalue λ never exceeds the multiplicity of that eigenvalue.

Looking back at the previous example, we can see that both eigenvalues 1 and 2 have multiplicity 2, yet
dimE1 = 1 and dimE2 = 2. The inequality holds in both cases but we only obtained equality in one. There
is lots more that one can say about multiplicities of eigenvalues but we leave it at this for now, and say a
bit more in the next section. We now end this section with one more important fact, which will be our last
addition to the big theorem.

Proposition 6.1.10. λ = 0 is not an eigenvalue of A if and only if det(A) 6= 0.

Proof. We show that λ = 0 is an eigenvalue of A if and only if det(A) = 0. We can see that λ = 0 is an
eigenvalue of A if and only if det(A− λI) = det(A− 0I) = det(A) = 0, which is all we needed to show.
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Since we can only discuss eigenvalues for square matrices, this proposition can extend our list of results
coming from the big theorem.

Theorem 6.1.11. Let S = {u1, . . . ,un} be a set of vectors in Rn and let A =
[
u1 · · · un

]
with associated

linear transformation given by T : Rn → Rn. The following statements are equivalent:

1. S spans Rn.

2. S is linearly independent.

3. The system Ax = b has a solution for every b ∈ Rn.

4. T is onto.

5. T is one-to-one.

6. A is invertible.

7. ker(T ) = {0}.

8. S is a basis for Rn.

9. rank(A) = n.

10. Nullity(A) = 0.

11. det(A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

6.2 Diagonalization

Let’s jump right in.

Definition 6.2.1. An n× n matrix is diagonalizable if there exists n× n matrices Λ and X such that

• Λ is diagonal.

• X is invertible.

and
A = XΛX−1

Note that Λ is the greek capital letter for λ. This is intentional, and we will soon see that the diagonal
entries of Λ are precisely the eigenvalues of A.

Example 6.2.2. If X =

[
1 0
2 1

]
and Λ =

[
4 0
0 −3

]
, then X−1 =

[
1 0
−2 1

]
and XΛX−1 =

[
4 0
14 −3

]
. If

A =

[
4 0
14 −3

]
then we say A is diagonalizable.

This example doesn’t help much. In general, we need to find a way to construct the matrices X and Λ
that diagonalize A, and in doing so, we will see when a given matrix is not diagonalizable. Before embark-
ing on this adventure, it is worth noting one of the many reasons why diagonalization is useful. In many
applied fields, systems can be modeled by matrix multiplication and iterates of our system can be taken via
computing powers of a matrix. If the given matrix is diagonalizable, computing powers can be very easy.
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Assume that A is diagonalizable so that we can write A = XΛX−1, then

A2 = (XΛX−1)(XΛX−1) = XΛ2X−1

and
A3 = A2A = (XΛ2X−1)(XΛX−1) = XΛ3X−1

Continuing this process we can see that
Ak = XΛkX−1

and since Λ is a diagonal matrix, computing powers of it is excessively easy. We now begin the investigation
of when A is diagonalizable by stating the main result and digging into the details.

Theorem 6.2.3. An n × n matrix A is diagonalizable if and only if A has eigenvectors that form a basis
for Rn.

There are a few important things to point out regarding what we mean when we say eigenvectors.

Proposition 6.2.4. If λ1 and λ2 are eigenvalues of a matrix A and λ1 6= λ2, then if x ∈ Eλ1
and y ∈ Eλ2

it is always true that {x,y} form a linearly independent set. That is, eigenvectors corresponding to different
eigenvalues are always linearly independent.

This means that when given a square matrix A we can

1. Find all the eigenvalues of A (by finding roots of det(A = λI) = 0).

2. Find bases for all eigenspaces.

3. Put all basis vectors from different eigenspaces in a set and see if this set forms a basis for Rn. By
way of the above proposition, we know that the eigenvectors will form a basis (called an eigenbasis) if
there are n of them.

We now prove Theorem 6.2.3.

Proof. Let u1, . . . ,un be n (linearly independent) eigenvectors for a matrix A, with eigenvalues labeled
λ1, . . . , λn (note here that we are assuming there are n distinct eigenvalues for simplicity of the proof but
this is not always the case), so that B = {u1, . . . ,un} forms an (eigen)basis for Rn. Let X =

[
u1 . . . un

]
and

Λ =

λ1 . . .

λn


be the diagonal matrix with eigenvalues on the diagonal. Since B is a basis for Rn we know that X is
invertible, by the big theorem. Looking at the matrix multiplication, we see that

AX = A
[
u1 . . . un

]
=
[
Au1 . . . Aun

]
=
[
λ1u1 . . . λnun

]
=
[
u1 . . . un

] λ1 . . .

λn

 = XΛ

Since AX = XΛ we can conclude that A = XΛX−1 and A is diagonalizable.

Example 6.2.5. Let A =

[
4 −2
4 −2

]
and show that A is diagonalizable by finding matrices X and Λ such

that A = XΛX−1.
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We begin by finding the eigenvalues of A as well as bases for the eigenspaces. By computing the charac-
teristic polynomial for A we see that

det(A− λI) = −(4− λ)(2 + λ) + 8 = −(8 + 2λ+ λ2) + 8 = λ2 − 2λ = λ(λ− 2) = 0

This means that λ = 0, 2 are the eigenvalues of A. In computing bases for both eigenspaces, we just need to
find bases for Null(A) and Null(A− 2I) respectively. We get that

Null(A) = Span
{[1

2

]}
and Null(A = 2I) = Span

{[1
1

]}
Following the proof of Theorem 6.2.3, we set X =

[
1 1
2 1

]
and Λ =

[
0 0
0 2

]
and these are precisely the

matrices that diagonalize A. Note the the order in which we place the vectors is very important, if we
swapped the order of 0 and 2, on the diagonal of Λ, while leaving the columns of X unchanged, the resulting
matrix product would not equal A. You must always have the columns of X correspond, in the same order,
with the eigenvalues for those column vectors. Moreover, if you have an eigenvalue of multiplicity k, then
there will be exactly k diagonal entries of Λ that are equal to that given eigenvalue.

Example 6.2.6. Construct a 3× 3 matrix A with the following eigenvalues and eigenvectors.

λ1 = 2,u1 =

0
1
0

 λ2 = −1,u2 =

−1
0
2

 λ3 = 5,u3 =

4
4
2


This can quickly be done by working backwards through the mechanics of the proof of Theorem 6.2.3. Let

X =

0 −1 4
1 0 4
0 2 2

 and Λ =

2 0 0
0 −1 0
0 0 5


By computing X−1 (which we know exists), the resulting matrix XΛX−1 will have the prescribed eigenvalues
and eigenvectors.

We now use the full strength of Theorem 6.2.3.

Example 6.2.7. Is A =

[
1 1
0 1

]
diagonalizable?

It suffices to see if there exists a basis of eigenvectors of A. We have

det(A− λI) = det
([

1− λ 1
0 1− λ

])
= (1− λ)2

hence 1 is the only eigenvalue of A, with multiplicity 2. Since we need a basis of eigenvectors in order to
diagonalize A, we must have the dimension of E1 be equal to 2. If it is not, then there is no way for our
eigenvectors to form a basis for R2, since we will not have enough of them. In computing the eigenspace we
see that

A− I =

[
0 1
0 0

]
If we wanted, we could stop right here since the null space of this matrix can never be 2 dimensional,
because it has rank 1 (rank-nullity is being used here). If we want to be more explicit, we can directly
compute E1 = Null(A− I) and find that

Null(A− I) = Span
{[1

0

]}
Regardless of the argument we prefer, we can now see that A is not diagonalizable.
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Shortcuts like this one can be very helpful in practice. There is one shortcut in particular that can really
come in handy.

Proposition 6.2.8. Let A be an n× n matrix and assume that {λ1, . . . , λn} are distinct eigenvalues (the
word distinct here means that there are exactly n eigenvalues, no two of which are equal), then A is always
diagonalizable.

Proof. If A has n distinct eigenvalues, then the characteristic polynomial of A has exactly n distinct roots.
That is,

det(A− λI) = (λ− λ1)(λ− λ2) · · · (λ− λn)

This means that the multiplicity of each eigenvalue is 1. Now, recalling that dim(Eλ) ≤ m(λ) for all
eigenvalues, we have that dim(Eλi

) ≤ m(λi) = 1 for all i = 1, . . . , n, hence we must have dim(Eλi
) = 1 for

all i, because eigenspaces of actual eigenvalues of a matrix are never 0 dimensional (in fact, the only instance
when Eλ = {0} for some matrix A is when λ is not and eigenvalue of A). This means that we get exactly
one (linearly independent) eigenvector coming from each eigenspace, of which there are n in total. Putting
them all together in one set, we obtain a set of n linearly indepedent vectors in Rn, which (by the theorem)
forms our desired eigenbasis. This implies that A is diagonalizable.

Example 6.2.9. Is A =

1 1 1
0 2 1
0 0 3

 diagonalizable?

Recalling our nice little trick for triangular matrices, we can see that the eigenvalues are 1, 2, and 3
respectively, which are distinct! This means that A is diagonalizable, by the above proposition.

Although this proposition is great, we still need to treat it with care. In particular, not all diagonalizable
matrices have distinct eigenvalues.

For an easy example, one should note that the zero matrix is diagonalizable. Moreover, if we consider

the identity matrix I =

[
1 0
0 1

]
, then we can write I as

I = III−1

which (in a silly way) satisfies the definition of being diagonalizable. Moreover, we could compute the null
space of I − I, and see that it admits a basis of eigenvectors (in particular it admits the standard basis).

Before ending this chapter, we provide one last alternative way to check if a matrix is diagonalizable.
One can think of this as a generalization of the proposition on distinct eigenvalues.

Proposition 6.2.10. Suppose A is an n × n matrix with only real eigenvalues (so none of them are
complex numbers). A is diagonalizable if and only if the dimension of each eigenspace is equal to the
multiplicity of the corresponding eigenvalue.

In general, one calls the dimension of Eλ the geometric multiplicity of λ whereas the usual multiplicity
m(λ) is known as the algebraic multiplicity. This proposition is saying that the geometric multiplicity
is always less than or equal to the algebraic multiplicity, and when they are equal, the given matrix is
diagonalizable.

Proof. An n× n matrix A is diagonalizable is and only if it admits n linearly independent eigenvectors (by
Theorem 6.2.3). Moreover, each eigenspace has dimension no greater than the multiplicity of the associated
eigenvalue, i.e. dim(Eλ) ≤ m(λ). Since A is an n×n matrix, the sum of the multiplicities of the eigenvalues
must equal n, because det(A − λI) is a degree n polynomial. Lastly, since the eigenvectors coming from
different eigenspaces are always linearly independent, we can conclude that the sum of the dimensions of all
eigenspaces equals n. Counting up one basis vector for each dimension, we end up with exactly n eigenvectors,
hence a basis for Rn, completing the proof.
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